1. Nernst Sign Reversal in the Hexatic Vortex Phase of Weakly Disordered aMoGe Thin Films“, Y. Wu, A. Roy, S. Dutta, J. Jesudasan, P. Raychaudhuri, and A. Frydman, Phys. Rev. Lett. 132, 026003 (2024)

  2. Proximitized insulators from disordered superconductors“, Moshe Haim, David Dentelski, and Aviad Frydman, Phys. Rev. B 108, 014505 (2023)

  3. Interdependent superconducting networks“, I. Bonamassa, B. Gross, M. Laav, I. Volotsenko, A. Frydman, and S. Havlin, Nature Physics (2023)

  4. Enhancement of superconductivity upon reduction of carrier density in proximitized graphene“, Gopi Nath Daptary, Udit Khanna, Eyal Walach, Arnab Roy, Efrat Shimshoni, and Aviad Frydman, Phys. Rev. B 105, L100507 (2022)

  5. Visualizing Current in Superconducting Networks“, X. Wang, M. Laav, I. Volotsenko, A. Frydman, and B. Kalisky, Phys. Rev. Applied 17, 024073 (2022)

  6. Setup for pressurizing thin films through the superconductor–insulator transition“, R. CohenM. NikolaevskyR. Salem, and  A. Frydman, Review of Scientific Instruments 92, 083903 (2021)

  7. Superconducting Dirac point in proximetized graphene“, Gopi Nath Daptary, Eyal Walach, Efrat Shimshoni, Aviad Frydman, arXiv:2009.14603v1 (2020)

  8. Universal Voltage Fluctuations in Disordered Superconductors“, A. Roy, Y. Wu, R. Berkovits, and A. Frydman, arXiv:2006.00566v1 (2020)

  9. AC Measurement of the Nernst effect of thin films at low temperatures“, Y. Wu, A. Frydman, and A. Roy, arXiv:2003.07946 (2020)

  10. Quantum Superconductor-Metal Transitions in the Presence of Quenched Disorder”, N. A. Lewellyn, I. M. Percher · JJ Nelson, J. Garcia-Barriocanal, I. Volotsenko, A. Frydman, T. Vojta, A. M. Goldman, Journal of Superconductivity and Novel Magnetism 33, 183–190 (2020)

  11. Investigation of specific heat in ultrathin two-dimensional superconducting Pb“, T. D. Nguyen, A. Frydman, and O. Bourgeois, Phys. Rev. B 101, 014509 (2020)

  12. Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry“, Tuyen Nguyen, Adib Tavakoli, Sebastien Triqueneaux, Rahul Swami, Aki Ruhtinas, Jeremy Gradel, Pablo Garcia-Campos, Klaus Hasselbach, Aviad Frydman, Benjamin Piot, Mathieu Gibert, Eddy Collin, Olivier Bourgeois, Journal of Low Temperature Physics, volume 197, 348–356 (2019)

  13. Infinite-randomness fixed point of the quantum superconductor-metal transitions in amorphous thin films“, Nicholas A. Lewellyn, Ilana M. Percher, JJ Nelson, Javier Garcia-Barriocanal, Irina Volotsenko, Aviad Frydman, Thomas Vojta, and Allen M. Goldman, Phys. Rev. B 99, 054515 (2019)

  14. Imaging quantum fluctuations near criticality“, A. Kremen, H. Khan, Y. L. Loh, T. I. Baturina, N. Trivedi, A. Frydman , and B. Kalisky, Nature Physics 14, 1205 (2018) 

  15. Local view of superconducting fluctuations“, Shai WissbergAviad Frydman, and Beena Kalisky, Appl. Phys. Lett. 112, 262602 (2018)

  16. Tunneling probe of fluctuating superconductivity in disordered thin films“, David Dentelski, Aviad Frydman, Efrat Shimshoni, and Emanuele G. Dalla Torre, Phys. Rev. B 97, 100503(R) (2018)

  17. Quantum criticality at the superconductor insulator transition probed by the Nernst effect“, Arnab Roy, Efrat Shimshoni, Aviad Frydman, Phys. Rev. Lett. 121, 047003 (2018)
  18. Vortex variable range hopping in a conventional superconducting film“, Ilana M. Percher, Irina Volotsenko, Aviad Frydman, Boris I. Shklovskii, and Allen M. Goldman, Phys. Rev. B 96, 224511 (2017)

  19. “Multiple periodicity in a nanoparticle based single-electron transistor”, O. Bitton, D. B. Gutman, R. Berkovits and A. Frydman, Nature communications, 8 402 (2017)

  20. “Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements”, S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis A. Frydman and Olivier Bourgeois, Nature Communication, 14464 (2017)

  21. Glassy Dynamics in Disordered Electronic Systems Reveal Striking Thermal Memory EffectsA. Eisenbach, T. Havdala, J. Delahaye, T. Grenet, A. Amir, and A. Frydman, Phys. Rev. Lett. 117, 116601 (2016).

  22. The Higgs mode in disordered superconductors close to a quantum phase transition“, D. Sherman, U.S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan,  M. Chand, P. Raychaudhuri, M. swanson, N. Trivedi, A. Auerbach, M. Scheffler, A. Frydman and M. Dressel, Nature Physics 11, 188 (2015).

  23. “Specific heat measurement set-up for quench condensed thin superconducting films“, Shachaf Poran, Manel Molina-Ruiz, Anne Gérardin, Aviad Frydman and Olivier Bourgeois, Rev. Sci. Inst., 85, 053903 (2014).

  24. Effect of Coulomb interactions on the disorder-driven superconductor-insulator transition“, Daniel Sherman, Boris Gorshunov, Shachaf Poran, Nandini Trivedi, Eli Farber, Martin Dressel, Aviad Frydman, Phys. Rev. B 89, 035149 (2014).

  25. Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition“, Y. Lee, A. Frydman, T.R. Chen, B. Skinner, and A.M. Goldman, Phys. Rev.B. 88, 024509 (2013).

  26. Tunneling Density of States of Indium Oxide Films Through the Superconductor to Insulator Transition“, D. Sherman, G. Kopnov, E. Farber, D. Shahar and A. Frydman. J. superc. And novel Magn. 26, 1473, 2013.

  27. Periodic negative magnetoresistance in granular YBa2Cu3O7δ nanowires“,  D. Levi, A. Shaulov, A.Frydman, G.Koren, B. Ya. Shapiro and Y. Yeshurun, Euro Physics Lett., 101, 67005 (2013).

  28. Zero bias anomaly in a two dimensional granular insulator”, N. Ossi, L. Bitton, D.B. Gutman, and A. Frydman, Phys. Rev. B.,  87, 115137 (2013).

  29. “The Electron Glass”, M. Pollak, M. Ortuno and A. Frydman, Cambridge University press (2012).

  30. Ulta-slow relaxation in discontinuous-film based electron glasses”, T. Havdala, A. Eisenbach, and A. Frydman,  Euro Phys. Lett., 98, 67006 (2012).

  31. Measurement of a Superconducting Energy Gap in a Homogeneously Amorphous Insulator”,  D. Sherman, G. Kopnov, D. Shahar and A. Frydman,  Phys. Rev. Lett. 108, 177006 (2012).

  32. Extended object tunneling: Current-carrying states of Abrikosov vortices in a superconductor with artificial nanobarriers”, B. Rosenstein, I. Shapiro, B. Ya. Shapiro, Dingping Li, A. Frydman, S. Poran, and D. Berco, Phys. Rev. B 85, 054512 (2012).

  33. Disorder induced superconducting ratchet effect in nanowires”, S. Poran, E. Shimshoni and A. Frydman, Phys. Rev. B 84, 014529 (2011).

  34. Coexistence of Coulomb blockade and zero bias anomaly in a strongly coupled nanoparticle” , L. Bitton, D.B. Gutman, R. Berkovits and A. Frydman, Phys. Rev Lett. 106, 016803 (2011).

  35. Absence of weak antilocalization in ferromagnetic films“, N. Kurzweil, E. Kogan and A. Frydman, Phys. Rev. B, 82, 235104 (2010).

  36. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors“, A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, D. E. Prober, J. Appl. Phys, 108, 084507 (2010).

  37. All-optical nano modulator, sensor, wavelength converter, logic gate, and flip flop based on a manipulated gold nanoparticle“, Asaf Shahmoon, Yoed Abraham, Ofer Limon, Liora Bitton, Aviad Frydman, Ron Unger and Zeev Zalevsky, J. Nanophotonics, 4, 041780 (2010).

  38. Tunable superconducting nanoinductors“, Anthony Annunziata, Daniel Santavicca, Luigi Frunzio, Gianluigi Catelani, Michael Rooks, Aviad Frydman and Daniel E Prober, Nanotechnology, 21, 445202 (2010).

  39. Design and Fabrication of 1 × 2 Nanophotonic Switch” Asaf Shahmoon, Maoz Birenboim, Aviad Frydman, and Zeev Zalevsky, J. Nanotechnology, 2010, 953212 (2010).

  40. Niobium Superconducting Nanowire Single-Photon Detectors“, A.J. Annunziata, D.F. Santavicca, J.D. Chudow, L. Frunzio, M.J. Rooks, A. Frydman and D.E. Prober, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 19 , 327 (2009).

  41. Itinerant Ferromagnetism in the limit of electron localization“, N. Kurtzweil, E. Kogan and A. Frydman, Phys. Rev. Lett. 102, 096603 (2009).

  42. Fabrication of electro optical nano modulator on silicon chip” O. Limon, L. Businaro, A. Gerardino, L. Bitton , A. Frydman , Z. Zalevsky.  Microelectronic Engineering 86, 1099, (2009).

  43. Two-fluid behaviour at the origin of the resistivity peak in doped manganites”, D. I. Golosov, N. Ossi, A. Frydman, I. Felner, I. Nowik, D. Orgad, M. I. Tsindlekht, Y. M. Mukovskii, Europhysics letters, 84, 47006 (2008).

  44. Mesoscopic effects in macroscopic granular systems“, A. Cohen and A. Frydman, Journal of Physics: Condensed Matter, 20, 075234 , (2008).

  45. Effective medium approximation for hopping conductivity and Josephson junctions“, Y. M. Strelniker, S. Havlin and A. Frydman, Physica B, 394, 368 (2007).

  46. Spreading of Mercury droplets on thin Silver films at room temperature” A. Beer, Y. Lereah, A. Frydman and H. Taitelbaum, Phys. Rev. E, 75 051601 (2007).

  47. Inverse slow relaxation in granular hopping systems“, N. Kurzweil and A. Frydman, Phys. Rev B., rapid communications, 75 020202(R) (2007).

  48.  “Superconducting niobium nanowire single photon detectors” A. J. Annunziata, A. Frydman, M. O. Reese, L. Frunzio, M. Rooks and  D. E. Prober, Proc. of SPIE 6372 63720V-7 (2007).

  49.  “Hopping percolation transition in granular ferromagnets”, Y.M.  Strelniker, S. Havlin, R. Berkovits R and A. Frydman. J. Appl. Phys., 99, 08P205 (2006).

  50. Magneto-transport in ferromagnetic granular networks“, H. Vilchik, A. Frydman and R. Berkovits,  Physica Status Solidi c, 3, 288 (2006).

  51.  “Phase transition from the ferromagnetic to superparamagnetic with a loop shift in 5-nm nickel particles“, X. S. Liu, K Huang, S. Q.  Zhou, P. Zhao, U. Meridor, A. Frydman and A. Gedanken, , J. Mag. Mag Mat., 305, 504 (2006).

  52.  “Controllable room-temperature metallic quantum dot“, L. Bitton and A. Frydman, Applied physics letters, 88, 113113 (2006).

  53.  “The signature of a double quantum-dot structure in the I-V characteristics of a complex system“, L. Bitton, D. Radovsky, A. Cohen, A. Frydman and R. Berkovits, Phys. Rev. B73, 035331 (2006).

  54.  “Magnetic coding in systems of nano-magnetic particles“, S. Chakraverty,   B. Ghosh, S. Kumar and A. Frydman, Applied Physics Letters, 88, 042501 (2006). 

  55. The synthesis and magnetic properties of monodispersed single domain nickel nanospheres and highly globular nanostructures of NicoreNiOshell“, D. Liu, E. Meridor, A. Frydman and A. Gedanken, J. Mag. Mag Mat., 301, 13 (2006).

  56.  “Magnetoresistance of mesoscopic granular ferromagnets“, A.Y. Dokow, H. Vilchik and A. Frydman, Phys. Rev. B72, 094402 (2005).

  57.  “The role of ultrasmall grains in a granular ferromagnets“, A.Y. Dokow, D. Barness and A. Frydman, International Journal of Nanoscience, 4, 887 (2005).

  58.  “Resistance distribution in the hopping percolation model“, Y.M. Strelniker, S. Havlin, R. Berkovits and A. Frydman, Phys. Rev. E 72, 016121 (2005).

  59.  “The effect of lithography processing on the I-V characteristics of Al-Al2O3-Ag junctions“, A. Kreimer and A. Frydman, J. Appl. Phys., 97, 124502 (2005).

  60.  “Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene – like carbon“, V. G. Pol, S. V. Pol, A. Frydman, G. N. Churilov, and A. Gedanken, Journal of Physical Chem. B, 109, 9495 (2005).

  61. Zero-field resistance dip in magnetic tunnel junctions employing a granular electrode” D. Barness and A. Frydman, Phys. Rev. B72, 012413 (2005).

  62. Is a multiple excitation of a single atom many times equivalent to a single excitation of an ensemble of atoms”, I. Kanter, A. Frydman and A Ater, Europhysics Letters, 69 874 (2005).

  63. Utilizing hidden Markov processes as a new tool for experimental physics”, I Kanter A. Frydman and A. Ater, Europhysics Letters, 69, 798 (2005).

  64.  “Memory in a magnetic nanoparticle system: Polidispersity and interaction effects” , S. Chakravarty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta, A. Frydman, S. Sengupta and P.A. Sreeram, Phys. Rev. B71., 054401 (2005).

  65. Percolation transition in a two-dimensional system of Ni granular ferromagnets“, Y.M. Strelinker, Richard Berkovits, A. Frydman and S. Havlin, Phys. Rev. E., rapid communications, 69, 065105(R) (2004).

  66. “Combining nano-mechanics and magneto-electronics in systems of granular Ni”. A. Cohen, D. Radovsky, D. Barness and A. Frydman, International Journal of Nanoscience, 3, 381 (2004).

  67.  “Encapsulating a superconductor material, MgCNi3, in a Carbon Nanoflask” R.K. Rana, V.G. Pol, I. Felner, E. Meridor, A. Frydman and A. Gedanken, Advanced Materials, 16(12), 972 (2004).

  68.  “Magneto-mechanical effects in nano-magnets”, A. Cohen and A. Frydman, Physica Status Solidi. (C), 1/1, 33 (2004).

  69.  “Magneto-transport properties of dilute granular ferromagnets”, A. Cohen, A. Frydman and R. Berkovits, Solid State Commun., 129/5, 291 (2004).

  70.  “Crossover from 2D to 3D magnetic disorder in sub-mono-atomic ferromagnetic layers” A. Frydman and R.C. Dynes, Phys. Rev. B68, rapid communications, 100408(R) (2003).

  71.  “Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit”, O. Bourgeois, A Frydman and R. C. Dynes, Phys. Rev. B, 68, 092509 (2003).

  72.  “The Superconductor Insulator Transition in Systems of Ultrasmall Grains”, A. Frydman, Physica C, 391, 189 (2003).

  73.  “Spreading of a mercury droplet on thin gold films”, A. Be’er , Y. Lereah , A. Frydman and H. Teitelbaum, Physica A 314, 325 (2002).

  74.  “The proximity effect in systems of ultra-small grains”, A Frydman, Phys. Stat. Sol. (b) 230, 127 (2002).

  75.  “Universal transport in 2D granular superconductors”, A. Frydman, O. Naaman and R.C. Dynes,  Phys. Rev. B66 052509 (2002).

  76.  “Inverse Proximity Effect in a Strongly Correlated Electron System”, O. Bourgeois, A Frydman and Robert C. Dynes, Phys. Rev. Lett. 88, 186403 (2002).

  77.  “Granular Superconductors and Ferromagnets, a Proximity Effect Based Analogue”, A. Frydman and R.C. Dynes, Phil. Mag. 81, 1153 (2001).