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Abstract

The Superconductor-Insulator Transition (SIT) is a pivotal quantum phenomenon in condensed
matter physics, where systems transition from a superconducting state to an insulating state
upon varying non-thermal parameters. At the heart of this transition are quantum fluctuations,
offering insights into a quantum critical regime where neither full superconductivity nor full
insulating behavior dominates. Despite extensive research, fundamental aspects such as the
emergence and nature of exotic bosonic phases during the SIT, remain a topic of intense debate,
with a number of unresolved questions, some of which this dissertation seeks to address.

This study aims to elucidate the underlying mechanisms of bosonic phases in disordered
granular superconductor (SC) systems via two innovative methods: (1) Thermodynamic mea-
surements, using a highly sensitive technique to study the specific heat of granular ultra-thin
films of indium (In) as they are driven through the SIT, with a focus on the potential emergence
of a Bose metal (BM) phase. These measurements were carried out in collaboration with Dr.
Olivier Bourgeois’ group at the Néel Institute, CNRS, Grenoble, utilizing their facilities; and (2)
Transport measurements, examining the fundamental units of these phases—NS junctions—in
engineered SC dot matrices of amorphous indium oxide (InO) on single-layer graphene (SLG).
Both single dot rows (1D) and dot matrices (2D) arrays were studied to analyze their electri-
cal properties by resistance and differential conductance measurements. Each chapter of this
dissertation is organized around these two methods.

The findings include intriguing thermodynamic signatures in the specific heat of In films
at intermediate layer thicknesses, where the R(T ) curves exhibited AM behavior with saturated
resistance at low temperatures, observed during the transition from insulating to superconducting
states as the material was driven through the SIT. A prominent secondary feature in the specific
heat signal deviates from known behavior: the signal exhibits a sharp increase that remains
relatively flat and constant at higher temperatures, rather than returning to the normal state
signal. This is the first time such a secondary feature has been measured in specific heat of
SC films. Consequently, anomalies in the entropy were derived. Additionally, a change in
the dominant heat carriers was measured, indicating a unique characteristic specific to these
intermediate layers.

Transport measurements provided novel insights into NS junction behavior, with unique oscil-
lation and fluctuation patterns measured in both resistance versus gate voltage and conductance
versus bias voltage at different gate voltages. These oscillations in conductance appeared inside

i



Abstract

and outside the SC gap, with the most pronounced patterns observed in the 1D device. Our
main analysis efforts focused on these conductance oscillation patterns, utilizing the ’singular
value decomposition’ (SVD) technique for the first time to analyze complex experimental data.

The nature of these new experimental observations is not yet fully understood. However,
these findings shed new light on the intricate dynamics governing the SIT and the complexities
of these fascinating Bose phases. They pave the way for future inquiries and advancements
in quantum condensed matter physics, bringing us closer to a comprehensive understanding of
these captivating quantum phases.
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Chapter 1
Introduction

1.1 Superconductor to Insulator Transition (SIT)

Classic phase transitions are driven by thermal fluctuations and are characterized by a critical
temperature, TC . Below TC , the system is at one phase, and above TC , it transitions to a second
phase. An example of a classic phase transition is the superconductor-normal state transition
when a metallic system becomes superconducting at T = TC . A different type of phase transi-
tions are quantum phase transitions (QPTs), which occur at zero temperature, hence thermal
fluctuations are not relevant. QPTs are driven by quantum fluctuations and are controlled by
a non-thermal tuning parameter, g, such as magnetic field, thickness, or level of disorder. An
example of a QPT is the superconductor-insulator transition (SIT), in which a superconductor
transits to an insulator at zero temperature [1–15]. At T = 0, the QPT occurs at a quantum
critical point (QCP), where g = gC . For low but finite temperature, the transition is charac-
terized by a quantum critical regime around gC (see scheme 1.1), where quantum fluctuations
dominate and the system is neither entirely a superconductor (SC) nor an insulator (I).

Figure 1.1: Scheme of the SIT as a function of the tuning parameter, g. gC is the critical point
where the phase transition occurs. At g < gC , the system is in its superconducting phase, while
for g > gC , it is insulating. The ’fan’ between the two phases denotes the quantum critical
regime, with a width that depends on the temperature.
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Introduction

The SIT is a prototype QPT, which is experimentally accessible and, as such, holds special
interest. Various experiments have been conducted to explore systems undergoing the SIT, with
each experiment manipulated by a specific tuning parameters. These parameters include varia-
tions in film thickness [2–7], binary material composition [15], magnetic field [1, 8–11], electric
field [12–14] etc. Notably, the vast majority of systems observed to undergo the SIT have been
confined to the two-dimensional (2D) limit, where the sample thickness is smaller than the su-
perconducting correlation length, ξ.
A plethora of exotic phenomena occurring across the different phases of the SIT and in the
vicinity of the transition has been uncovered. This includes the emergence of exotic bosonic
states, alongside the manifestation of quantum fluctuations. These phenomena beckon further
exploration to unravel their underlying nature, a quest to which our research endeavors to con-
tribute.

Several theoretical paradigms have been proposed to explain the SIT. This research specif-
ically focuses on the "bosonic model" of the SIT, as it is most relevant to our experimental
systems.

1.2 The bosonic model of the SIT

Fundamentally, the superconducting state can be described by a macroscopic wave function
φ = φ0e

iΘ, where φ0 is the amplitude of the order parameter that is proportional to Cooper
pairs (CP) density and Θ is the superconducting phase. Hence, macroscopic superconductivity
requires phase coherence across the sample. The "bosonic model" of the SIT [16] is based on
CP tunnelling from one superconducting region to another via Josephson coupling. When CPs
can tunnel throughout the entire sample, phase coherence is achieved, enabling macroscopic su-
perconductivity. Conversely, if CPs cannot tunnel, no coherence between the superconducting
regions is achieved, and the system is in its insulating phase. A granular system serves as the
prototype of the bosonic model. In such a system, the disorder is on a much larger scale than
the system’s atomic length. A typical example is a discontinuous superconducting film. The
film contains superconducting "islands" (Fig.1.2), each being a superconductor. In such a sys-
tem, the superconducting wave function is localized within each grain (island). In the absence of
global phase coherence, there is no macroscopic superconductivity and the system is an electrical
insulator. Global superconductivity fully appears when phase coherence percolates throughout
the system. This is controlled by the tunneling ability of CP, which is related to two energies:
(1) the Josephson energy, EJ = Φ0Ic

2π
, where Φ0 is the inverse magnetic flux quantum and Ic is

the critical Josephson current of the junction; and (2) the charging energy of the grain (associate
with the Coulomb interaction) EC = (2e2)/C where C is the capacitance of one grain. The ratio
between these energies EC/EJ determines whether a CP can tunnel between grains or not, and
thus determines whether the system is a superconductor or an insulator [4].

2



Introduction

(a) (b)

Figure 1.2: A sketch of a granular system. (a) Top view: Illustration of the superconducting
islands, each with its distinct phase (b) Side view: Demonstration of the granular films’ super-
conducting "islands" on a substrate.

The Bosonic model of the SIT is relevant not only to physically-morphologically granular
systems but also to systems with the so called "emergent granularity". Variations in composition,
density, disorder, or other properties within the system can lead to the formation of regions with
distinct electronic characteristics, resembling individual grains or clusters within the material,
akin to granular materials. The phase of these systems, similar to the case in granular materials,
depends on the phase coherence of the CPs between the grains. Phase coherence allows for the
collective flow of supercurrent, resulting in macroscopic superconductivity. In contrast, absence
of coherence between the superconducting grains leads to an insulating phase.

This phenomenon of "emergent granularity" was proposed by Trivedi et al.[17], where calcula-
tions predict that, with increasing disorder, emergent electronic granularity occurs. SC domains,
on the scale of the coherence length, are embedded in an insulating matrix and coherently cou-
pled by Josephson tunneling. They show that at low levels of disorder, CP pairing amplitude is
relatively homogeneous throughout the sample, leading to a SC phase of the system. As disor-
der levels increase, at T < TC , the system self-organizes into superconducting blobs within an
insulating matrix. The coherence between these grains is lost with increasing disorder, resulting
in a system that is macroscopically insulating; however, it possesses non-coherent SC mesoscopic
grains within it (see Fig. 1.3).

Their model successfully provides a unified paradigm for understanding the destruction of
superconductivity in both initially grown granular films and homogeneously disordered films.
This reinforces the similarity between the bosonic mechanisms underlying the SIT in these
systems, which comprise superconducting grains and the coherence between them.

3
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Figure 1.3: Pairing amplitude maps illustrating the evolution with increasing disorder strength,
V. At V=t, the pairing amplitude is relatively homogeneous, while at higher values of V, self-
organized superconducting "islands" emerge. Calculations were performed using the Bogoliubov-
de Gennes method, see in source [17]).

An example for such an "emergent granular" system is a thin film of amorphous-InO (InO),
which, although being morphologically uniform, has proven to possess emergent granularity in
the form of superconducting "puddles" embedded within an insulating matrix [18].

1.3 Bosonic phases in the SIT

The SIT has been shown to possess exotic phases. These exotic phases are interpreted as bosonic
phases, as they cannot be explained through a fermionic point of view, as detailed in this section.
Their formation arises from the intricate interplay between Coulomb interactions and Josephson
coupling, and they are characterized by collective electronic behavior.

1.3.1 Bose insulator

The term ’Bose insulator’ (BI) refers to a phase of matter characterized by the localization
of bosonic quasiparticles, leading to insulating behavior. In the SIT scenario, according to
the bosonic model (Sec.1.2), this phase arises when the charging energy of CPs outweighs the
Josephson coupling energy (EC > EJ). As a result, the insulating phase comprises localized
CPs, hindering coherent tunneling. This localization leads to the system exhibiting insulating
behavior, despite the presence of CPs, which is somewhat counterintuitive. The formation of
a BI is observed in granular or disordered superconducting systems near the QCP of the SIT,
which are the systems under study in our research.

The transport properties of the SIT in granular systems are exemplified in Fig. 1.4, where
the transport measurements of a granular lead film [3] driven through the SIT as a function
of the thickness are presented. It is seen that the thinnest film (top curve) shows insulating
behavior, with resistance increasing exponentially as temperature decreases, while the thickest
film (bottom curve) demonstrates superconducting properties, with resistance dropping sharply
at T = TC .

Notably, TC through the SIT is not well-defined, and the curves are characterized by broad
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Figure 1.4: R(T ) curves of granular lead films, having different thickness exhibiting the SIT.
The figure is reproduced from [3]

transitions with long "tails". Furthermore, an abrupt resistance change occurs at a temperature
of T ≈ 7.2K even in the insulating film. The nature of this transition is interpreted by the
bosonic model of the SIT. As the grains within the films are not coupled and EJ < EC , the
system exists in a ’bosonic insulator’ state, characterized by resistance increasing exponentially
as e−

∆
T . With increasing thickness, EJ surpasses EC , facilitating phase coherence percolation

throughout the sample and resulting in the transition to a superconducting state. The gradual
nature of this transition leads to the broad transitions observed. With increasing thickness the
transition become sharper, indicating the formation of increasingly larger continuous supercon-
ducting regions as grains become globally connected.

A strong manifestation of the BI is the experiment conducted by Sherman et al. [19, 20],
where tunneling measurements were performed into two InO films close to the SIT, one on the
SC side and the other on the insulating side. These measurements revealed the presence of a
non-zero superconducting gap in both films, indicating the presence of CPs within the insulating
phase of the SIT. These tunneling measurements and corresponding resistivity characterization
of the two films are shown in Fig. 1.5.

This sustained gap, even in the insulating phase at the SIT, was predicted theoretically.
Trivedi et al. [21] found that the superconducting DOS gap (in thin quench-condensed films)
’survives’ throughout a disorder-driven SIT. They demonstrated that as the disorder level, V ,
evolves, the gap ωDOS remains finite at both the superconducting and insulating states of the
system. Although the gap was found to be inhomogeneous at different levels of disorder, it
persists at every level. This behavior is illustrated in Fig. 1.6, where the DOS was calculated
for various V values of the system at a fixed low temperature of T = 0.1K.
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(a) (b)

Figure 1.5: (a) Normalized tunneling DOS (dotted lines), at 1K (lines are fits to the BCS, see
in origin) and (b) the corresponding transport measurements of two films of InO close to the
SIT. Blue is a SC film and red is an insulating one. Both exhibits finite SC gap. Reproduced
from [19]

(a) (b)

Figure 1.6: The DOS, ωdos. (a) Disorder dependence of N(ω) at a fixed low temperature of
T = 0.1K and (b) representative spectra. A hard gap (black region) persists for all V above and
below the SIT (Vc ≈ 1.6). Reproduced from [21].

1.3.2 Anomalous metallic state

Experimentally, as a variety of systems were driven through the SIT using different tuning knobs
and different materials, in many of them a metallic state was observed between the insulating
phase and the SC phase of the system. One of the first experiments where the metallic phase was
measured is in the work of Jaeger et al.[22], where thin films of various materials were studied
as they were driven through the SIT with increasing thickness. R(T ) curves of thin films of Ga
and Pb are presented in Fig. 1.7(a,b) respectively. It is evident that the films’ resistance evolves
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from "infinity" (insulating films) to approximately zero resistance (superconducting films) as
their thickness increases, and in between, the resistance levels off and saturates at a finite value,
indicating a metallic state.

Another early experiment was conducted by Hebard et al.[8], in which they used magnetic
field to tune the SIT of five 100Å thick InO films, at different degrees of disorder. Fig. 1.7(c)
depicts the R(T ) curves of an InO film, with Tc = 0.29K, as a function of magnetic field. It
shows a clear regime where the resistance saturates at low temperatures, indicating metallic
behavior.

(a) (b) (c)

Figure 1.7: R(T ) curves of different materials driven through the SIT, using various tuning
parameters: (a) Gallium and (b) Lead, with varying thicknesses. (c) Log plots of an InO film
measured under different magnetic fields. The zero field is represented by the black dotted line,
while non-zero fields are indicated by open symbols. Notably, near the quantum critical point
(QCP), finite resistance was measured at low temperatures in all systems. (a, b) reproduced
from [22], (c) from [8].

These two experiments represent just a small example of the many conducted to explore
the SIT, where a metallic state was observed (for review, see [23]). Despite the diversity in
experimental setups and materials, the properties of the metallic state observed are quite similar.
As the temperature decreases, the resistivity exhibits anomalous behavior: it saturates at low
temperatures to values significantly different from those predicted by the Drude model (σD).
Specifically, in some stages, the resistivity initially drops, as if the system were approaching a
SC state. However, it then saturates at a low temperature to a value much smaller than σD. In
other stages, the resistivity increases as if the system were approaching an insulating phase, but
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then it saturates at low temperatures to a higher value than expected from the Drude model.
According to Drude theory, the conductivity of (3D, pure) metals is given by: σD = e2Dν,
where the diffusion coefficient D is defined as D = vF l

3
, with vF being the Fermi velocity, l

the mean free path and ν the electron density of states (DOS) at the Fermi energy. In both
the studies by Jaeger et al. and Hebard et al. presented above, considering the stages where
the resistance drops and then saturates as examples, the measured resistivity at the plateau
is significantly lower than the expected σD, violating the Wiedemann-Frantz law ([24]). This
metallic behaviour which cannot be explained by the Drude or Fermi liquid theories, has led to
its designation as the "anomalous Bose metal" (BM) state.

The metallic behavior observed in variety of experiments on 2D systems has been the subject
of ongoing principled debate regarding its classification as a true ground phase or merely an
experimental artifact (see [23]).

For instance, Tamir et al.[25] demonstrated that an observed metallic behavior in two different
2D systems is an experimental artifact. By measuring two different 2D SCs, they showed that the
metallic behavior can be eliminated by filtering external radiation, indicating the high sensitivity
of these films to external radiation perturbations, which suppress the superconducting state.
Other experimentalists argue that sufficient precautions were taken to ensure the quality of the
experiments.

The emergence of this anomalous metallic state reopens fundamental questions about the
nature of this phase transition and present theoretical challenges. It raises the debate on whether
the SIT is a direct transition or a combination of two distinct QPTs: the quantum transition
from a superconducting to metallic state (QSMT), followed by another QPT where the metal
transitions to an insulator (QMIT). Moreover, this phenomenon has been observed in various
2D systems, which poses theoretical problem, as it sparks renewed discussions on the possibility
of a metallic state in two dimensions. Since 1979, when Abrahams et al. proposed the scaling
theory of localization [26], also supported by experiments, it has been widely accepted that
a metallic state cannot exist in 2D, since (at the thermodynamic limit) all 2D systems are
strongly localized. Therefore, as the temperature is decreased, the resistance should increase
exponentially, approaching infinity at zero temperature in the thermodynamic limit. This topic
is extensively reviewed and analyzed, with arguments and theories presented (for a comprehensive
review, see [23, 27]).

Several new theories have been proposed to address the BM [24, 28, 29]. Most of these
theories suggest that this metallic state results from a suppressed or ’failing’ superconducting
state rather than being a genuine ground state.

One theory, proposed by Spivak et al. [24, 29], attributes the metallic state to quantum
fluctuations in the amplitude of the superconducting order parameter near the transition, which
dominate the physical characteristics of the system. According to this model, as the transition is
approached, the electron wave functions become strongly nonuniform, leading to nonuniformity
in the order parameter at the transition point. The formation of BMs is attributed to the
fluctuations in EC and EJ near the QCP of the SIT, reflecting the interplay between phase and
number fluctuations of the CPs. EC between electrons in the grains suppresses the fluctuations
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of the number of electrons, and due to the uncertainty principle, it increases the fluctuations in
the amplitude of the phase fluctuations. In the insulator phase, fluctuations in the number of
CPs cease, resulting in an infinite uncertainty in the phase. Conversely, in the superconducting
phase, phase coherence is established, resulting in an infinite uncertainty in the number of CPs.

The works of Shimshoni et al. [30] and Kapitulnik et al. [31] suggest that dissipation may be
key to understanding the BM phase. However, this dissipation, which results in a metallic state,
arises not from an external source, which is unlikely to persist at T = 0K, but rather from a
self-generated mechanism within new phases. One such phase is described by Dalidovich et al.
[27, 32], in the quantum phase glass model.

In this model, disorder in the distribution of tunneling amplitudes causes SCs to lose global
phase coherence while retaining local phase coherence, becoming glassy. Within this glassy phase,
the phase on each lattice site remains fixed, but the directions vary from site to site, creating
a phase or rotor glass where phases are frozen along noncollinear directions. The slow phase
relaxation (the effective order parameter) in the glassy phase, indicating a high density of low-
lying excitations, prevents bosons from localizing. Bosonic excitations moving in a dissipative
environment with numerous ’false minima’ metastable states take an exponentially long time to
find the ground state, thus remaining delocalized. Consequently, a metallic state emerges at zero
temperature, characterized by a critical resistivity that scales with a universal value, consistent
with experimental observations. Thus, glasses, with their sluggish phase dynamics and intrinsic
low-lying excitations, offer a pathway for delocalized bosonic excitations to ultimately create a
metallic state.

Currently, there is no unified theory that comprehensively accounts for all observed metallic
states across various systems and tuning parameters. In our research, we aim to address the
unresolved core question of whether the metallic phase observed during the SIT is indeed a
genuine phase, utilizing specific heat measurements. Specific heat measurements are a powerful
experimental approach for identifying both the bosonic insulator and bosonic metal exotic states
at the SIT, as they are true thermodynamic measurements that provide insights into the energy
scales and collective excitations associated with bosonic phases. Given their pivotal role in our
research, a detailed explanation of this measurement is provided in the subsequent section.

1.4 Heat capacity measurements through the SIT

Heat capacity (C) is a fundamental thermodynamic property that quantifies the amount of heat
energy (Q) needed to raise the temperature of a material by a certain ∆T , given by the equation:
∆Q = C∆T . As heat is absorbed in a solid lattice, it is transported both by phonons and by
conductance electrons. At the limit of low temperatures (T < θD, the Debye temperature), the
contribution of the phonons is derived according to Debye’s model [33] to be proportional to T 3,
while the electrons’ contribution is linear with T. Therefore, the heat capacity can be written as
a sum of these two contributions:

C = γT + βT 3 (1.1)
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Here γ =
1

3
K2

BTDFπ
2 and β =

12π4

5
∗ nKB

θD
3 , where KB is the Boltzman constant, DF is the

density of states at the Fermi level and θD is the Debye temperature. Hence, at low temperatures
the electronic contribution is expected to be the dominant term in C. Using the thermodynamic

relation C(T ) ∼ T
∂S

∂T
, one can see that as the entropy, S, of a system is changed, the heat

capacity is affected accordingly. This occurs when a system undergoes a phase transition, where
it transverses from a disordered phase (high entropy) to an ordered one (lower entropy). For
a first-order phase transition, (e.g the transition from liquid water to ice), the entropy shows a
discontinuity, resulting in a delta function in C. In the case of a second order phase transition,
such as the transition from a normal (resistive) state to a superconducting state, there is a
change in the entropy of the electrons which are unpaired above TC and paired below it (at
the superconducting phase), resulting in a heat capacity jump at the transition temperature.
When the system is cooled below TC the electronic component of the heat capacity in the SC
(Ces) rapidly declines as the temperature decreases (see Fig. 1.8) and it reduces exponentially
(Ces ∼ −∆

KBTC
) reaching zero as T approaches 0.

Figure 1.8: The molar heat capacity signature vs temperature of niobium (hollowed dots) and of
a normal metal (black dots). For the niobium- a jump is seen at the superconducting transition,
at its TC = 8.7K. Taken from [34].

The heat capacity is an extrinsic property of a material, while the intrinsic property is
the specific heat capacity. The specific heat, Cp, is the amount of heat required to raise the

temperature of one unit mass of a substance by 1 Kelvin, defined as: Cp =
Q

m ·∆T
where m

denotes the mass of the substance.
The thermodynamic properties of a system holds a lot of information, as they are sensitive to
all the degrees of freedom on the system. As such, measurements of Cp are a great tool to gain
information on the different phases of a system, and, in particularly, on the bosonic phases of
disordered systems as they are driven through the SIT. In the past, our group was involved in
pioneering work of specific heat measurements of thin-films of lead (Pb) undergoing a SIT as
a function of thickness. Poran et al. [35] used an innovative measurement setup allowing the
specific heat measurements of ultra-thin films simultaneously with their transport properties as
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they were tuned through the SIT. The main results of this work are depicted in Fig. 1.9(b),
showing the superconducting electronic specific heat (Cse) as a function of thickness, alongside
the corresponding R(T ) curves (Fig.1.9(a)).

The R(T ) curves reveal the distinct phases observed as the system was driven through the
SIT, transitioning from an insulating state (thin films, top) to a superconducting state (thicker
films, bottom). Notably, these transport measurements are consistent with the bosonic model
for the SIT, reflecting the granular nature of the lead system, similarly to those shown in Fig. 1.4
discussed in Sec.1.3.1. Importantly, there exists a range of thicknesses where the system exhibits
metallic behavior, adding to the ongoing debate surrounding the possibility of an intermediate
metallic state.

The critical temperature, TC , of the films as measured by specific heat (Fig.1.9(b)) occurs
close to T = 7.2K, corresponding to the Pb bulk TC , throughout the entire SIT, evident in
both insulating and superconducting films. This observation is also consistent with the bosonic
model, as specific heat measurements are insensitive to the coherence between grains but rather
reflect their internal properties. Hence, as each Pb grain transitions to its superconducting state,
Cp exhibits a discontinuity, both in the insulator (which is, in fact, a bosonic insulator) and in
the superconducting films.
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(a) (b)

(c) (d)

Figure 1.9: Main results of Pb thin-films, reproduced from [35].(a) R(T) measurements as a
function of the films’ thickness (b) Cse measurements of number of thin Pb layer as they are
driven through the SIT. The jump in Cse is at the transition temperature, T ∼ 7.2K, and grows
as the sample is thinned (c) The Cse jump (at 3.5K) as a function of the films thickness. The
jump exhibits higher values for thinner films and peaks near the transition (d) The reduced Cp

vs T 2 of the different Pb films.

Fig.1.9(c) reveals an additional surprising feature: the thinner the SC film, the higher the
jump of the specific heat ∆Cp and the excess specific heat below TC and it peaks close to the
QPT. This is indicative of the system’s increasing entropy as it approaches the transition and
is interpreted as evidence of strong quantum fluctuations in the vicinity of the QCP. Such find-
ings highlight the importance of specific heat measurements in investigating phase transitions,
particularly at a QPT.

When examining the reduced specific heat (
Cp

T
) plotted against T 2 for the measured films

(see Fig. 1.9(d)), linear curves were observed. Conventionally, one would expect constant lines
in such a representation, indicating the dominance of heat transport by electronic carriers at low
temperatures, as described by equation 3.4. The observed behavior of the reduced Cp contradicts
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this expectation and suggests a very significant contribution from phonons. In our research, we
aim to understand the behavior of electronic heat carriers. Therefore, we endeavor to minimize
the contribution of phonons to Cp, as it may potentially surpass that of electrons, thereby
enabling the observation and analysis of the latter’s behavior.

1.5 Gate induced SIT

Apart from characterizing the bosonic phases from a thermodynamic perspective, we also en-
deavor to comprehend the microscopic electronic phenomena within them. To achieve this, we
intend to measure the differential conductance of granular systems in the proximity of these
bosonic phases. Our approach involves utilizing graphene as a substrate for these devices, as
described below.

In recent years, new avenues for tuning parameters of the SIT have emerged with the discov-
ery of graphene and advancements in the field of two-dimensional electron gas (2DEG) materials
[36–38]. Graphene, in particular, has arisen as an excellent substrate for tuning the SIT due to
its unique band structure, which allows easy control of carrier density (n) by applying a gate
voltage. Consequently, when decorating graphene with a granular SC system, the coupling be-
tween the grains can be controlled by gating the graphene, allowing the tuning of EJ and EC .
The carrier density of graphene (electrons) increases with higher applied voltage, generating
stronger coupling between the grains (applying a high negative voltage hole-couples the grains).
This enables the control of the coupling between the grains (due to Josephson tunneling through
the graphene), and thus generates a gate-induced SIT. In the work of Bouchiat et al. [36] dis-
continues Sn was evaporated on a graphene substrate, creating a self-assembling granular system
(Fig.1.10(a)). This random-granular system was driven through the entire SIT, by applying dif-
ferent gate voltages (Vg) on the graphene substrate. At low Vgs the system was in its insulating
phase, and at higher Vg values, the system turned to a SC. The corresponding R(T) curves for
the different Vgs values are displayed in Fig. 1.10(b). Implementing the same methodologies, this
research group conducted a subsequent study [37], where the system was engineered to create
an ordered array of Sn discs on top of the graphene substrate (see Fig. 1.10(c)). Once again, the
system exhibited an SIT, as can be seen in Fig. 1.10(d). It is noteworthy that in both systems,
a BM state was observed over a wide range of Vg values, as evidenced by saturated resistance at
low temperatures. This observations contribute to the ongoing debate regarding the feasibility
of a genuine metallic ground state during the SIT.

In these works, tin was utilized to induce superconductivity in graphene. The carrier density
of tin is much higher than the maximum achievable n of graphene. This difference caused a
significant shift in the energy level of electrons within the proximized regions of graphene, pushing
them way above the carriers densities achieved in graphene. In our study, we coupled graphene
to amorphous indium oxide (InO). Unlike tin, InO possesses a lower carrier density (further
details in Section 3.2.2). Therefore, when combined with graphene, this choice of SC can lead
to a scenario where the Fermi levels of both the proximitized and normal regions of graphene
are similar. This alignment of energy levels reveals new phenomena and observations. In a
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(a) (b)

(c) (d)

Figure 1.10: Granular tin systems ontop of CVD graphene. Top row: self assemble tin (a) 10nm
thick tin islands (b) R(T) measurements at different Vgs. Addapted from [36]. Bottom row:
Ordered tin discs arrays (d) 50nm thick tin discs, with dimensions of b = 1µm, and 2a = 400nm

(d) R(T) curves at different Vgs. Taken from [37]. Both systems undergo the SIT, traversing
from an insulating state at low Vgs to a superconducting state at high Vg.

recent study by our research group, conducted by Daptary et al. [39], graphene was coupled to a
30nm thick layer of InO. As explained in section 1.2, InO possesses emergent granularity, and
consequently, when coupled with graphene, it induces proximity-based SC regions in the graphene
layer, imbedded in the normal state background. Conspicuously these areas are characterized
by a difference in Fermi energy. A schematic sketch of the a : InO/SLG device used in the
study of Daptary et al. is illustrated in Fig. 1.11(a). The superconducting InO grains (in
red), embedded within the insulating layer (light red), induce superconducting regions in the
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underlying graphene (light blue "mirroring" islands in the graphene layer).
The study showed that when graphene is coupled with a low n SC, the system exhibits two

distinct charge neutrality points. One corresponds to the normal regions of graphene, known as
the Dirac point (DP), while the other emerges in the proximitized superconducting graphene,
termed the "superconducting Dirac point" (SDP). The latter can be reached thanks to the low
n of the InO.
The resistance peaks observed in an a : InO/SLG device, where the InO was deposited at an
O2 partial pressure of 4 × 10−5, are illustrated in the top panel of Fig. 1.11(b). To distinguish
between the two neutrality points and determine which corresponds to the DP and which to the
SDP, Hall measurements of the device were conducted under various magnetic fields. The results
are presented in the lower panel of Fig. 1.11(b). The DP is at Vg = −80V , where RXY = 0,
while the Rxx peak, at Vg =≈ −10V , corresponds to the SDP.

(a) (b)

Figure 1.11: (a) Schematic sketch of the a − InO/SLG device, showing superconducting InO

grains (red) embedded within the InO insulating layer (light red) and the resultant proximity-
induced regions in the graphene underlayer (light blue). (b) Resistance behavior of the device
as a function of Vg at T = 1.7K. The upper panel displays Rsq at B = 0T , showing two
distinct peaks. The lower panel shows Hall resistance, Rxy, under varying magnetic fields (up to
B = 9T ). The DP is identified at Vd= −80V , corresponding to Rxy = 0. Taken from [39].

In this experiment, a layer of InO was uniformly deposited onto graphene [39, 40], covering
the entire surface of the graphene substrate. This led to proximized disordered superconductivity
throughout the graphene layer, with randomly distributed normal-superconductor (NS) inter-
faces interspersed within it. In our research, we aimed to model different geometries dominated
by NS junctions, where the N is a low n material.

Two distinct properties of graphene/SC interfaces play a central role in our study: Andreev
reflection and Klein tunneling.
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1.6 Andreev reflection and Klein tunneling in graphene

Graphene itself does not exhibit superconducting properties. However, when it is coupled to
a SC, superconductivity is induced in the graphene due to the proximity effect. In this effect,
which occurs when a normal metal (N) is coupled with a SC, the superconducting properties
such as the SC wave function extend into the adjacent non-superconducting material inducing
superconductivity within it. Andreev reflection (AR) processes offer a microscopic view on
how this proximity effect operates; at the interface between the normal-metal and the SC (NS),
incident electrons are retro-reflected as holes, resulting in the transmission of Cooper pairs— each
carrying a charge of 2e— and the flow of a dissipationless supercurrent in the SC. This conversion
process, known as AR [41], is illustrated in Fig. 1.12(a). The current-voltage characteristics of
N-S junctions were studied in detail in the BTK theory [42]. The BTK theory demonstrates that
the transmission coefficient across such interface, is strongly influenced by the energy barrier,
specifically the VF difference between the N and S regions. As this difference in VF s increases,
the transmission probability decreases, ranging from 1 for perfect transmission (when the VF s
match) to 0.

When the N region is confined by two SCs, forming an SNS junction, Andreev retro-reflection
(ArR) induces localized states within the normal region (schematically depicted in Fig. 1.12(b)).
These confined states are referred to as Andreev bound states (ABS), which result in the forma-
tion of quasi-particles with discrete energy levels within ∆ of the SC. These states play a crucial
role in various phenomena and devices, including Josephson junction.

(a) (b)

Figure 1.12: Schematic representation of Andreev retro-reflection (ArR). Incident electron (black
full circle and arrow) undergo retro-reflection as hole (hollow circle, dashed line), while Cooper
pair with a charge of 2e is transmitted into the superconducting region. (a) ArR at the interface
between a normal metal (N) and a superconductor (SC). (b) ABS in a metal, created as electron
is ArR in between two SC.

When graphene serves as the coupling medium between two SC, an additional process known
as Klein tunneling occurs. The electrons in graphene can be characterized as Dirac fermions (with
the holes being the positrons). These fermions move at constant velocity VF , approximately

VF
∼=

C

300
∼= 106[m/s] (where C is the speed of light), regardless of their energy. This is due
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to the unique Dirac cone band structure of the graphene, resulting in a linear energy dispersion
given by E = ℏVFK.

As a consequence of this constant velocity, Dirac fermions cannot backscatter when encoun-
tering a potential barrier (as their velocity cannot be zero). Thus, even when the energy of
an electron in graphene is smaller than the height of the barrier, it has a finite probability of
tunneling through it with minimal attenuation ([43, 44]). This intriguing behavior is known as
the Klein paradox for massless Dirac fermions. It dictates that when an electron in the graphene
moves to the right (for example) and encounters a potential barrier, it can only be scattered into
a state of either right-moving electron or left-moving hole.

Therefore, unique behavior occur at the NS interface in graphene; even in the case of a VF

mismatch, AR will always take place. At normal incidence (α = 0), the electron-hole conversion
happens with unit probability, even if there is a large mismatch between the Fermi levels (ΛF )
at the two sides of the interface.

These phenomena are combined in our experiment, where we investigate graphene devices
coupled to superconducting ordered dot matrices of InO. As a result, distinct regions are formed
within the graphene: low n superconducting regions induced by the InO, and normal state areas.
These different regions within the graphene form NSN junctions, where Andreev retro-reflection
(ArR) induces localized states [41, 45, 46]. Given graphene’s tunability, one can control the
strength of the barrier between these regions and the resulting current in these junctions.

This tunability of the graphene gives rise to a special reflection scenario. In ultra-clean
(weakly doped, low-disordered) graphene devices, specular reflection can be achieved. For low
EF , (|EF | < ∆), interband Andreev specular reflection occurs, where the hole undergoes an
interband transition, from the CB to the valance band (VB), changing its effective mass sign
and resulting in specular reflections. In this case, the incident angle, α, becomes a non-trivial
function of EF to conserve momentum and energy. Moreover, in such clean graphene devices,
since EF can be continuously tuned, the crossover between the two AR processes can be measured
and characterized [46, 47]. For |ϵ| < |EF |, intraband retro-reflection occurs, and for |ϵ| > |EF |,
interband Andreev specular reflection occurs, with a clear difference signature between the two
reflections in the subgap conductance [45, 47].

However, in our experiment the regime of EF ≤ ∆ isn’t accessed. Our devices are fabricated
on top of a 285 nm SiO layer, and our ∆InO = 0.7meV . This places us in an energy regime where
we experience strong potential variation (up to δEF ≈ 50meV ) due to charge impurities, which
is much larger than our SC ∆. Moreover, the SC InO contains inhomogeneities. Thus, both
phenomena of ArR and the Klein paradox play integral roles and contribute to our experimental
results. However, we do not consider Andreev specular reflection processes at our interface.
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Chapter 2
Motivation

Investigating the SIT is of great interest as it provides a fascinating opportunity to delve into
the quantum realm of disordered SCs and uncover fundamental properties that defy conven-
tional understanding. The SIT is a quantum phase transition driven by quantum fluctuations
and controlled by a non-thermal tuning parameter, offering insights into the quantum critical
regime where quantum fluctuations dominate, and the system is neither a superconductor nor
an insulator. What unfolds in this critical regime, where the system straddles the boundary
between insulator and superconductor? Can we understand the exotic phenomena that emerge,
shaping our understanding of the quantum landscape? What is the source and effects of the
strong quantum fluctuations measured at the vicinity of the transition? Particularly intrigu-
ing are the exotic bosonic phases; the presence of a superconducting gap within the insulating
phase (Bose insulator), and the anomalous intermediate metallic state (Bose metal) observed
during the transition. Is it a true anomalous metallic ground state, or does the system undergo
a direct quantum phase transition? These captivating questions, and more, are yet to be fully
answered. The objective of this research is to contribute to our understanding of the complex
phenomena underlying the SIT, particularly focusing on the emergence of the bosonic phases.
While the full resolution of these mysteries remains a challenge, our work aims to provide new
insights and take a step forward in unraveling the intricate dynamics at play. Using new ap-
proaches and innovative techniques, we aim to address two primary questions regarding the
bosonic phases: (1) identification of the existence of a true metallic ground state during the SIT,
explored through thermodynamic measurements, and (2) characterization of the bosonic phases
by transport investigation of its building blocks- NS junctions.

In this research we studied the impact of disorder on the SIT, specifically focusing on the
influence of disorder on the properties of granular superconductors undergoing this QPT. To
achieve this, we studied two systems using different experimental approaches: thermodynamic
measurements for one and transport measurements for the other. These methods allowed us
to explore granular systems across various phases of the SIT and within the quantum critical
regime. To investigate the feasibility of a BM phase during the SIT, we employed a highly
sensitive thermodynamic approach, while to facilitate the study of the fundamental building
blocks of the bosonic phases— Josephson junctions— we engineered a granular system in the
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form of ordered dot matrices, which were characterized using transport measurements.
Thermodynamic measurements
To gain further insights into the SIT and the bosonic phases that may occur, we study the

thermodynamic property of specific heat (Cp) in ultra-thin films of granular indium with varying
thicknesses as they transition from an insulator to a superconductor. As Cp has proven to be a
powerful tool for probing QPTs, our research aims to search for indications of a secondary Cp

peak, which could be a signature of the presence of an additional transition to an intermedi-
ate metallic state, as well as the presence of strong quantum fluctuations near the QCP. Such
signatures can clarify whether the SIT is a direct transition or involves an intermediate second
quantum-metallic-superconductor transition. Moreover, Cp measurements provide a thermody-
namic approach that allows to analyze the behavior of the insulating side of the transition. Unlike
transport measurements, it is not limited by the percolation effects of electrons throughout the
entire sample.

In order to do so, we opt to study a granular indium (In) film as it undergoes the SIT.
We specifically choose to study ultra-thin layers of (In) due to the combination of three key
properties:

1. Its critical temperature of Tc = 3.4K, which falls within the middle of our experimental
temperature range.

2. Its higher Debye temperature (θInD = 129K) compared to Pb, previously studied (θInD =

129K > θPb
D = 88K), results in a ratio of approximately 3 in their phononic contributions.

This decision aims to reduce the phononic contribution to Cp at low T, thus enabling
the focus on electronic effects. The significant phononic contribution in Pb obscures the
electronic effects, as was discussed in Section 1.4. Moreover, this substantial phononic
contribution in Pb may lead to the excess Cp and entropy that were measured before.

3. Its latent heat of vaporization, ∆HV aporization = 231.5KJ/Mol, which enables to quench-
condensed it.

This combination of properties makes In a suitable material for our experiment, offering a
temperature window that captures the system behavior above and below Tc, while enhancing
the electronic contribution to Cp due to its lower β (phonon contribution).

By measuring Cp, we suggest to obtain valuable insights into the system’s behavior during
the transition, at and around the quantum critical point, as well as on the nature of quantum
fluctuations near criticality.

Microscopic electronic characterization of building blocks of the Bosonic phases-
dI/dV measurements

As our research aims to enhance the understanding of the processes underlying bosonic phases
characterized by NS junctions, we fabricated an ordered array of InO islands on graphene.
By doing so, we can control where superconductivity is induced within the graphene, leading
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to the formation of SNS junctions within it. This control allows us to isolate and characterize
individual SNS junctions, enabling a detailed study of their properties.

These ordered arrays of low n superconducting islands offer a unique opportunity to inves-
tigate the fundamental building blocks of bosonic insulator- NS junctions. The periodic low n

system provide access to real granular system and facilitates the study of Andreev reflection
processes in low-density S-N junctions, where the carrier density in the superconducting regions
is possibly lower than in the normal ones. In order to gain a more thorough comprehension
of these building blocks, we expand our investigation to include periodic 1D systems. Smaller
systems are more easily modulated and comprehended, facilitating a deeper exploration of their
properties. Transport measurements, being global measurements, depend on the percolation of
electrons throughout the entire sample, and therefore are influenced by the number of available
electron trajectories and impurities present in the sample. By studying the transport properties
of these different ordered dot systems, we can explore the influence of dimensionality and pro-
vide valuable insights into the interplay between disorder and superconductivity. Furthermore,
our analysis focuses on differential conductance ( dI

dV
) measurements, as we systematically

tuned the gate voltage on the graphene substrate. This approach allows us to detect different
Andreev reflection patterns between the SNS junctions and signs of superconductivity at various
phases of the system, particularly in its non-superconducting phase. By studying the differential
conductance, we seek to uncover the microscopic electronic conduction processes in disordered
granular systems. Ultimately, our goal is to enhance the understanding of bosonic phases by
gaining insights into these fundamental aspects.
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Chapter 3
Experimental Methods

3.1 Heat Capacity Measurements

3.1.1 Calorimetric Cell Preparations

Measuring the heat capacity (C) of thin films is a challenging task, primarily due to the significant
substrate contribution. This is particularly true for thin films with ultra-small masses (few tens
of nanograms), as their contribution to the C is much smaller than that of the substrate, and
therefore can be overshadowed by it. Hence, a preparation of a special nano-sensor is necessary
to accurately measure the C of such thin films. Utilizing a unique fabrication method [48], we
can effectively mitigate the substrate’s contribution and successfully measure the C of these
ultra-thin films. The following subsections detail the fabrication steps of the nano-sensor.

Silicon Membrane Thinning

The fabrication process begins with a silicon nitride/silicon/silicon nitride sandwich chip (SiN/Si/SiN).
To reduce the substrate’s C contribution, the backside of the chip is thinned using a wet etching
process with potassium hydroxide (KOH). The SiN layer is unaffected by KOH, so it remains
intact except where it is selectively removed using reactive ion etching (RIE) with SF6 gas,
creating a 4 × 4mm window. Dipping the chip in KOH results in a thinned square 4 × 4mm

window on the backside of the chip (see Fig. 3.1). This thinned window, the ’membrane,’ serves
as the active part of the calorimeter cell (CC).

During the KOH etching, the membrane’s thickness is estimated by its color, aiming for a
yellow-orange hue, corresponding to 15− 25µm thick membrane.

Leads

The SiN on the front side of the sensor is removed and covered with a 100nm thick super-
conducting niobium-titanium (NbTi) layer, topped by a 30nm gold (Au) layer that protects it
from oxidation. Eight thin wires (can be seen in Fig. 3.2(a)) are defined from the Au layer
using a photolithography process followed by wet etching to remove the residues (KI for the Au
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Figure 3.1: Back and front side of the CC. The back side of the sensor is thinned to reduce the
substrate’s contribution.

layer, HNO3 + HF for the NbTi). These eight wires serve as electrical leads for the different
components of the sensor as well as mechanical support for the membrane.
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(e)

Figure 3.2: The CC. Top: The different fabrication steps (a) The thinned part with Au leads (b)
After Cu heater and NbN thermometer fabrication (c) The thinned part of the CC separated
from the bulk, after the additional etching step (d) Ready CC, after Ti/Au deposition on the
sample’s leads, using a mechanical mask. Bottom: Optical-microscope image of the complete
CC.

Heater and Thermometer

To measure C, one needs to supply heat to the system and measure the change in its temperature.
A heater and a thermometer are defined on the thinned membrane using photolithography and
lift-off processes. Heat is supplied by a 200nm thick copper (Cu) meander (the heater), and the
temperature change is measured through the resistance of a 80nm thick niobium-nitride (NbN)
slab (the thermometer). Both components are shown in Fig. 3.2(b).

The thermometer is plasma deposited, with deposition parameters chosen to ensure its resis-
tance is highly sensitive to small temperature changes at low temperatures, specifically within
the superconductor Tc range. This sensitivity determines the thermometer quality, defined as α:

α =
−1

RThermometer

· dRThermometer

dT
. A higher α allows for the detection of smaller changes in δT ,

enabling a higher signal for the CP measurement. α at low T is estimated by the resistivity ratio
(RR) between the thermometer resistance at room temperature and at liquid nitrogen temper-

ature: RR =
R77K

R300K

. To achieve the optimal α, the target RR is approximately 4. Repeated

experimentation suggests that this RR value can be achieved by using a
4

14
nitrogen to argon

gas mixture ratio and a power source frequency of 275KHz(±5Hz) during the NbN deposition.
To ensure a sensitive thermometer, the RR is checked at least four times on demi-sapphires
before the thermometer is deposited on the actual CC. This results in a sensitive thermometer
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operating within the desired temperature range of a few kelvins. A characteristic R(T ) curve of
the thermometer used in our experiment is presented in Fig. 3.3.

Figure 3.3: R(T ) curve of a NbN thermometer used in our experiment, with α = 0.0715 at
T = 2.7K.

Thermal Separation of the CC

With the leads, heater, and thermometer already fabricated in the CC, another photolithography
step is performed to isolate the active part of the CC from the thermal bath of the bulk. 1240µm
thin bridges are defined, that will support the active CC and carry the NbTi wires. An RIE

process with SF6 gas is used to etch all the silicon around the thinned part, leaving it suspended
on these 12 thin bridges, and thermally disconnected from the bulk (Fig.3.2(c)).

To allow transport measurements of the nano sample, a bilayer of 5nm titanium (Ti) and
200nm Au is deposited using a mechanical mask on the sample’s transport leads, located on
both sides of the CC (Fig.3.2(d)).

Mounting and Connecting the CC

Once a workable CC is achieved, it is mounted on a Cu sample holder. The sample holder has a
heater and a calibrated thermometer on its backside, used to control the sample’s temperature
during the experiment. The sensor’s contacts are connected to the holder pads using a micro-
bonder, as shown in Fig. 3.4(b). After placing and connecting the sensor to the holder, we
ensure that the sensor and its different components (heater, thermometer, sample leads) are not
shorted to ground nor between themselves.

A mechanical mask is placed over the sensor, covering the entire CC and its holder, except
for a single window that exposes a rectangle between the sample’s transport leads (Fig.3.4(b)).
This allows the deposition of our desired ultra-thin layers on-top of the suspended membrane,
using the “quench condensation” technique as described in the following paragraph.
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Figure 3.4: Mounting the sensor (a) The CC on a Cu holder with micro-bonded contacts (b)
The sensor under the mechanical mask. Only the quartz-crystal and the window between the
samples’ leads can be seen through it.

3.1.2 Quench Condensation

In this method, a thin layer is thermally evaporated in situ under UHV conditions and at liquid
helium temperature. The significant advantage of the technique is that a single sample can be
studied throughout the entire SIT, without the need to open the system, breaking the UHV con-
ditions and exposing the sample to the air, which can harm it. We used the quench condensation
(QC) technique to create the ultra thin layers that were studied in our C experiments.

For each experiment, three thermal evaporation boats with desired material grains were used.
The boats were connected to the probe after they were pre-melted (see Fig. 3.5(a)). The prob
was designed so that the evaporation boats were located directly under the sample (and the
thickness monitor quartz crystal) area, to allow direct evaporation.

Figure 3.5: Quench condensation setup (a) Three evaporation boats loaded with pre-melted
grains (b) The quartz crystal and CC behind the mechanical mask. When the shutter is open,
only the sample area is exposed to the evaporation.

As the sample was mounted to the probe, a second mechanical mask was placed to assure that
only the desired area on the cc and the quartz crystal were exposed to evaporation (Fig.3.5(b)).
A shutter and the quartz crystal were used to control the evaporation rate. When the required
thickness was achieved (as measured by the quartz crystal and by the sample’s resistance), the
deposition was terminated and R(T ) and C(T ) measurements were taken. Sequential evap-
orations and measurements were then performed, while maintaining the sample at cryogenic
temperatures and under UHV conditions.
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3.1.3 Measurement Protocol

The heat capacity is measured using the second harmonic ’2ω’ ac calorimetric technique [48–51].
In this technique, an alternative current at frequency ω is generated to the heater using a Lock-in
amplifier (LIA) as a source: I = I0cos(ωt). This results in a heating power at frequency of 2ω:

PHeating = I2RHeater = P0 (1 + cos(2ωt)) . (3.1)

Where P0 =
I20∗RHeater

2
. Consequently, the temperature change, δTac, in the thermometer

oscillates at 2ω and is measured by applying a small dc current (Idc) to the thermometer and
measuring the ac voltage (Vac) drop on it using a LIA at the second harmonic (thus, Vac is
referred to as V2f in some contexts):

δTac(T ) =
Vac(T )

αRth(T )Idc
(3.2)

Choosing the right working frequency (f) is extremely important. It is selected by scanning
the frequencies range and identifying the “adiabatic plateau”, where the f is smaller than the
thermalization time of the heat-bath (to prevent heat ’leak’, loss, to the surroundings, which
would result in signal loss), but larger than the diffusion time in the membrane. This is done
at three different temperatures (see Fig. 3.6) to ensure that the chosen working frequency falls
within the plateau across the entire temperature range of the experiment. At this limit, the term
for the C can be written as:

C =
PHeating

2πfδTac

(3.3)

Where PHeating is calculated from Eq.3.1, as RHeater and I0 are both known. f is the chosen
working frequency, and δTac is the temperature oscillation of the thermometer measured by the
LIA.

Figure 3.6: Frequency scan at three different temperatures to find the adiabatic plateau and
choose the working frequency. The plateau is where fd << f << fb where fd is the frequency
matches the diffusion time in the membrane, and fb is the frequency matches to the bath ther-
malization time. Between these two values the V2f signal is maximal.

26



Experimental Methods

As the system reaches based temperature, each experiment begins with a few calibration
steps: (1) Calibration of the thermometer, where its resistance (R(T )) is measured and the
temperature coefficient (α) is calculated. (2) Determining the working frequency, as previously
explained. (3) Maximizing the V2f signal. This is achieved by measuring the signal at three
different temperatures and adjusting the heating power and Idc on the thermometer to ensure
the V2f signal is at its maximal value without overheating the heater or the thermometer. After
these calibration steps, the heat capacity of the bare sensor, Csensor, which includes its heater,
thermometer, and contacts, is measured. This measurement has a dual purpose. First, to
validate that we indeed measure the heat capacity. This is confirmed by the behavior of the
reduced heat capacity of the sensor (CsensorT ), that should match this linear behavior when
plotted against T 2, given by:

C

T
= γ + βT 2 (3.4)

Secondly, the Csensor(T ) measurement serves as a baseline to be subtracted from subsequent
measurements of the thin films. This allows us to isolate the heat capacity of the thin films solely.
Measurement of the Csensor(T ) curve for a bare CC sensor is shown in Fig. 3.7.

Figure 3.7: Left: Measurement of Csensor that was used for the Indium experiment. Right:
CsensorT (T

2) of the same sensor. The linear behaviour of the curve follows Eq.3.4, confirming
the sensor’s suitability for heat capacity measurements. This linear curve serves as a baseline
and will be subtracted from subsequent measurements of the thin films.

Subsequently, we incrementally quench condensed thin layers of the desired material onto
the CC. Measurements of C(T ) and R(T ) are taken at each deposition step. To convert from
C to the intrinsic property of Cp, each C measurement is divided by the deposited layer mass,
extracted from the frequency change at the quartz crystal.

Fig. 3.8 shows a picture of a measured device after the completion of the experiment. The
suspended membrane displays the various components: the heater meander at the bottom of the
picture, the thermometer at the top, and a stack of 21 In layers in the center.
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Figure 3.8: The sensor utilized for the In experiment, at the end of the experiment. The 21 In

layers can be seen in the middle of the sensor, positioned between the heater at the bottom and
the thermometer at the top.

3.2 Transport Measurements of SLG/SC-Dots Bilayer De-
vices

3.2.1 Sample Fabrication

In this section, the fabrication of ordered InO nano-dots arrays fabricated on top of a monolayer
graphene substrate will be described. Before detailing the fabrication process of the SC dots, we
first describe the fabrication of the SLG substrate. In our study, we employed both exfoliated
SLG flakes and CVD films. Exfoliated SLG flakes are preferable due to their uniformity and
single-crystal nature. In contrast, while CVD-grown SLG films can cover large areas, they
potentially include polycrystalline domains that may introduce disorder, leading to smearing
of the Dirac point (DP). However, using CVD SLG offers significant advantages in terms of
scalability and saves valuable time in the fabrication process by eliminating the need for in-
house exfoliation.

SLG Flakes

To achieve SLG flakes, we start from graphite that is thinned into graphene through exfoli-
ation. Typically, after multiple exfoliation steps, monolayers are achieved and deposited on a
Si/SiO2 substrate with pre-prepared gold alignment marks. The alignment marks are essential
for ensuring precision throughout the fabrication process. We use blue scotch tape to thin the
graphite until an SLG flake is obtained (see scheme 3.9). Such tape is commonly used for this
purpose.
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Figure 3.9: Scheme of the exfoliation steps. The graphite is exfoliated using adhesive blue tape.
After several exfoliations, when an SLG flake appears to be obtained, it is deposited on the
Si/SiO2 wafer.

After transferring the flakes on the wafer, the sample is examined visually under an optical
microscope to identify SLG flakes. Once potential SLG flakes are identified, their ’identity’ is
confirmed using RAMAN spectroscopy. The RAMAN signal of SLG flakes exhibits (mainly) two
peaks (a 2D and a G bands peaks) [52]. By analyzing the shapes and relative intensity ratio of
these peaks, one can determine the quality of the graphene and confirm that it is indeed a single
layer. High-quality SLG exhibits a sharp 2D peak with an amplitude twice that of the G band.
A RAMAN scan of one of our measured SLG samples is shown in Fig. 3.10.

Figure 3.10: Raman spectra of one of the measured SLG samples. The 2D band peak is sharp,
and the ratio between the peaks is ∼ 2, confirming that it is indeed a high-quality SLG flake.

For CVD-grown SLG, we used commercially purchased SLG that was grown and trans-
ferred onto a doped Si/300nm SiO2 wafer by Graphenea company. The subsequent fabrication
steps are similar for both exfoliated single-layer graphene and CVD-grown SLG.

Annealing and Etching

The SLG chip undergoes annealing in a furnace to remove impurities and defects, enhancing
its purity and uniformity. The annealing process lasts for 4 hours at 350◦C under an argon
atmosphere. Subsequently, the SLG is shaped into the desired geometry using photolithography
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followed by SF6 plasma etching. In this work, we investigate SC/SLG bilayer devices in both
1D (single SC dot row) and 2D (SC dot matrix) geometries. Accordingly, the SLGs are etched
into rectangular shapes with dimensions of 1µm width and 18µm length for 1D devices. For
2D devices, the geometries vary, with the largest matrix being 60 × 20µm. Examples of these
devices, after the etching step, are shown in Fig. 3.11 panels a1 and b1.

Figure 3.11: Fabrication steps of 1D dot row (a1,a2) and 2D dot matrix (b1,b2). The bare SLG
after it was etched to the desired dimensions of 1µm narrow line (a1) and rectangle of 60×20µm

with gold Hall-probe configuration (b2). (a2,b2) With SC InO dots arrays. The dots are 1µm

in diameter with 1.2µm center-to-center distance.

Contacts Fabrication

Four-terminal gold contacts are defined on the SLG using e-beam lithography. The leads are
custom-designed using an AutoCAD program tailored to each SLG’s surroundings and geometry.
The gold alignment marks on the wafer aid in precisely aligning the contacts on the SLG. Con-
tacts consist of 4/50nm Cr/Au layers, deposited by e-beam and thermal sputtering, respectively.
An additional electrode is defined on the backside of the devices to facilitate gating.

Dots Fabrication

Similar processes of lithography followed by deposition are used to create the SC dot patterns
on the samples. The dots were designed with a diameter of 1µm and an inter-dot distance of
200nm. These parameters were consistently used in all our devices, both 1D and 2D dot arrays,
to ensure comparability.

The main challenge during the e-beam lithography step is achieving precise alignment of
the design on the SLG, especially for the 1D devices since both have a width of 1µm. This
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alignment is accomplished using pre-prepared Au alignment marks on the wafer. Examples of
SC dot devices are shown in Fig. 3.11(b1, b2).

After e-beam lithography, the sample is placed in the deposition chamber for evaporation of
the desired superconducting material, amorphous indium oxide (InO) in our case.

3.2.2 InO

InO was chosen for our graphene-based devices experiments for two primary reasons. Firstly, it
is a weak SC characterized by a low carrier density (n), which can be controlled by adjusting the
partial pressure of O2 during deposition, resulting in a range of carrier densities between 1019

and 1021cm−3. By adjusting n, both insulating and superconducting InO films can be fabricated
[19, 53–56]. In our experiment, InO was evaporated at O2 partial pressure environments of
8 × 10−6 and 1 × 10−5mbar. OPressure

2 < 8 × 10−6mbar resulted in superconducting samples,
while 8× 10−6 < OPressure

2 resulted in insulating samples. An OPressure
2 of 1× 10−5mbar resulted

in samples that are close to the SIT.
Secondly, InO was chosen since its level of disorder can be tuned through thermal annealing.

Annealing the sample on a hot plate up to 80 ◦ c releases oxygen impurities without affecting its
amorphous structure [54, 56]. This process lowers the sample’s resistance, pushing it towards
the superconducting phase. By starting with an insulating InO sample and annealing it, the
entire SIT can be observed using the very same sample. The SIT driven disorder of InO samples
was shown before, as in the work of Roy et al. [56] and can be seen in Fig. 3.12.

Figure 3.12: Adjusted from [56]. R(T ) curves of the same sample at different annealing stages.
The sample transitions from being an insulator (high R at low T s) to a SC (low R at low T s)
as it was thermally annealed.

InO was e-beam evaporated, using 99.999% pure (N5) In2O3 pieces. The base pressure in

31



Experimental Methods

the vacuum chamber was no more than 1.5e−6 mbar. The deposition was carried out at 8e−6 or
1e− 5 mbar oxygen partial pressure, with pure O2 gas was introduced into the vacuum chamber
controlled by a needle valve. 50nm of InO were deposited, at rate of 0.5− 1Å

S
.

3.2.3 Set up and Measurement Protocol

The device is fixed to a PVC sample holder, with a gold plate at its center (see Fig. 3.13), using
silver-paint. Cu wires are attached from the device to different gold pads on the holder.

(a) (b)

Figure 3.13: The sample holder from (a) top view and (b) side view. The holder includes a
centered gold plate used as a back plate, along with Au pads and pins for electric feed-through
from the sample. A sample with three devices is attached at the center using silver paint, which
is visible in the image.

The carrier density of the graphene is controlled by applying a gate voltage to the back
side of the Si wafer; the gold layer on the holder acts as one metallic plate of the capacitor, the
graphene acts as the second metallic plate, and the SiO2 serves as the dielectric material between
them. One of the contacts on the device is used as a second gate electrode. The resistance of
the device is measured while varying the gate voltage, obtaining R(Vg) curves. A schematic of
the measurement setup is shown in Fig. 3.14. It is important to note that the voltage source
used to gate the graphene also monitors the leakage current. We carefully watch the leakage
current to ensure it is not too high. Applying a voltage that is too high will break the gate,
which manifests as a jump in the leakage current. Typically, our 285nm SiO2 layer can hold up
to 120V .
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Figure 3.14: Sketch of the measurement setup.

We measured Rxx(Vg) (SLG carrier density) and the differential conductance ( dI
dV

) as a func-
tion of the source-drain voltage. These measurements were carried out for different temperatures
(300mK − 20K) and magnetic fields (0− 9T ) in two different He3 cryostats.
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Chapter 4
Results and Discussion

In this chapter, we present a comprehensive summary of our results, emphasizing the key ob-
servations that have arisen from our work. Following this, we engage in analysis and discussion.
This chapter is divided into two sections, each focusing on the different measurement used to
tackle the research goals. The first section delves into thermodynamic measurements of Cp, and
the second section examines the findings of transport measurements on arrays of NS junctions.

4.1 Specific heat measurements of Ultra-thin layers of in-
dium

Our Cp experiments were designed to address a key question related to the SIT. We aimed to
elucidate the nature of the bosonic phases emerging during the SIT, with a particular focus on
the potential existence of the BM phase. If this phase exists, its presence should be detected by
Cp measurements.

A complementary Cp study on a normal metal, Ag, undergoing an insulator-to-metal tran-
sition (MIT) is presented in the Appendix (A). This study provides additional context and
comparative baseline data, enhancing our understanding of the thermodynamic behavior of dis-
ordered systems.

Ultra-thin layers of In were quench condensed onto the membrane, and simultaneous mea-
surements of resistance and heat capacity were preformed at each evaporation step to detect the
BM state during the SIT. A total of 21 steps were measured, with layer thicknesses starting from
sub-nanometer and gradually increasing to 230nm, as detailed in Table 4.1.
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Step number Mass (gr) Thickness (nm) β (JK−4)

1 2.67143E-8 0.71429 NA
2 6.50048E-8 1.7381 3.57008E-5
3 9.17191E-8 2.45238 3.91862E-6
4 1.45148E-7 3.88095 5.33863E-6
5 2.07481E-7 5.54762 6.32858E-6
6 2.71595E-7 7.26191 4.78089E-6
7 3.21907E-7 8.60714 3.92895E-6
8 4.30545E-7 11.5119 6.76804E-6
9 5.10688E-7 13.65476 NA
10 5.5076E-7 14.72619 NA
11 5.8905E-7 15.75 NA
12 6.36245E-7 17.0119 NA
13 6.8166E-7 18.22619 NA
14 7.35088E-7 19.65476 4.61599E-6
15 8.20574E-7 21.94048 5.42887E-6
16 1.88647E-6 50.44048 9.33696E-6
17 2.88647E-6 77.17844 1.09542E-5
18 4.97018E-6 132.89261 1.14472E-5
19 5.80278E-6 155.15451 1.31258E-5
20 7.58373E-6 202.7735 1.1821E-5
21 8.57127E-6 229.17826 1.38598E-5

Table 4.1: Table of the mass, thickness and β values of the varied In layers.

The R(T ) measurements indicate that the system undergoes the SIT, transitioning from an
insulating phase (thinner layers, Fig. 4.1(a)) to a superconducting phase (thicker layers, Fig.
4.1(e)). In the intermediate layers, the R(T ) measurements show resistance saturation at low
temperatures (Fig.4.1(c)), indicating the presence of an anomalous metallic state. To provide
a clearer understanding of the behavior of the specific heat, we present the plot of Cp

T
vs T 2

(Eq.3.4), referred to as the reduced Cp, in the right column of Fig. 4.1. The reduced Cp

measurements are divided into three panels based on the observed characteristics of their R(T ).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Representative R(T ) curves of films in each phase category (left column) and the

reduced specific heat,
Cp

T
vs T 2 of the various steps (right column), categorized into three regions

according to their R(T ) curves. Different Cp structures are observed in each category: (a) R(T )

and (b)
Cp

T
vs T 2 for thinner layers (2-8), (c) R(T ) and (d)

Cp

T
vs T 2 for intermediate layers

(9-13), and (e) R(T ) and (f)
Cp

T
vs T 2 for thicker layers (14-21).
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The Cp data reveal three distinct structures at various layer thicknesses, which we associate
with the different phases of the system during the SIT, accordingly:

1. Thinner layers (2-8, insulating R(T )s): These layers showed a smeared peak around a
temperature of T = 3.8K (Fig. 4.1(a,b)), with the peak amplitude decreasing as the layer
thickness increases

2. Intermediate layers (9-13, BM region in the R(T )s): These layers exhibited a smeared peak,
followed by a subsequent second feature (Fig. 4.1(c,d)) around the same temperature of
T ≈ 3.8K.

3. Thicker layers (14-21, SC R(T )s): Layers 16-21 displayed a sharp jump at a well-defined
temperature of T ≈ 3.6K. Stages 14 and 15, while showing superconducting behavior in
R(T ), had Cp signatures resembling those of intermediate (stage 14) or thinner (stage 15)
layers (Fig. 4.1(e,f)).

We defined Tc from the Cp measurements as the temperature at which the reduced Cp curves
return to the linear curve of the normal state Cp/T versus T 2 in both insulating and supercon-
ducting films. For the insulating films, this temperature is T ≈ 3.8K, while for the SC films,
it is slightly lower at T ≈ 3.6K. These Tc values are somewhat higher than the bulk Tc in In

(3.4K), and it seems that as the layer thickness increases, Tc gradually approaches the bulk Tc

value. Previous studies on thin quench-condensed superconducting layers [35, 57] have reported
similar findings, indicating that the Tc of thin layers may exceed that of the bulk material. Re-
gardless of the layer’s phase— whether insulating or superconducting— a distinct feature in Cp

was observed, at the layer’s Tc, indicating the transition of In nanograins to a superconducting
state. The deposited In forms a granular film (since there was no adhesion layer deposited).
Consequently, as each In nanograin transitions to a superconducting state, a discontinuity in Cp

occurs. These findings are consistent with the bosonic model of the SIT, where the Cp jump in
the insulating phase serves as a distinctive marker for the existence of a Bose insulator phase,
as discussed earlier in the Introduction (1.4).

According to BCS theory, the ratio ∆Cp

Cn
= 1.43 [58], where ∆Cp is the Cp signal at Tc and

Cn is the normal phase Cp at the same temperature.
For bulk In, Cn = 0.821 mJ

Kgr
at T ≈ 3.8K and Cn = 0.7 mJ

Kgr
at T ≈ 3.6K [59]. The ratio ∆Cp

Cn

for the different layers, at their respective Tc values, is shown in Fig. 4.2. The ratio is higher
for thinner layers and initially decreases as the thickness increases. For thicker layers, the ratio
begins to rise with increasing thickness, getting closer to the theoretical value of 1.43, indicated
by the red line in the figure. Our thickest film (21st step), which is closest to bulk behavior,
exhibiting a ratio of ≈ 1.3, which is in good agreement with the theoretical prediction. The gray
area in the figure represents intermediate layer thicknesses, where this ratio analysis does not
apply due to fundamentally different behavior occurring in this region. This trend, where thinner
films exhibit higher peak amplitudes, is consistent with previous findings in quench-condensed
Pb [35] (see Fig. 1.9(c)).
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Figure 4.2: ∆Cp

Cn
at Tc as a function of layer thickness. Thinner layers exhibit the highest ratios,

which initially decrease as the thickness increases. For the thicker layers, the ratio begins to
increase again, with the thickest film (21st step) reaching approximately 1.3, approaching the
theoretical BCS value of 1.43 (indicated by the red line). The gray-shaded region covers the
intermediate layer thicknesses, where the ratio analysis is not applicable due to a fundamentally
different behavior occurring in this region.

While the behavior of the Tc signature in the thinner and thicker layers is consistent with
previous experiments [35], the occurrence of a prominent secondary Cp feature observed in the
intermediate thicknesses is a novel discovery. To the best of our knowledge, this phenomenon
has not been documented in previous experiments or addressed theoretically.

In the intermediate-metallic stages, after exhibiting a smeared peak similar to those observed
in the thinner layers, the reduced Cp signal does not return to the normal state Cp

T
behavior, which

is linear with respect to T 2. Instead, at Tc, it exhibits a sharp increase to a value higher than
the expected phononic contribution. Moreover, after this sharp jump the Cp/T signal remain
relatively flat and constant at higher temperatures. Based on equation 3.4, the slope represents
β, the phonon coefficient. The nearly flat and constant signal relative to T 2 is misleading and
suggests minimal phonon contribution at these stages, implying that other effects are dominating
the behavior. This includes the existence and persistence of additional states or fluctuations
introduced into the system during these stages.

Examining the amplitudes of the two features in the intermediate layers reveals an interesting
pattern: the amplitudes of the two features exhibit opposite trends. Specifically, as the amplitude
of the first peak increases with layer thickness, the amplitude of the second sharp jump decreases
(and vice versa between the 9th and 10th steps). This trend is illustrated in Fig. 4.3, where the
amplitudes were calculated after subtracting the phononic contribution from each curve using
linear fits. In the figure, the first peak amplitude is shown in black, while the second feature
amplitude is shown in red. The opposite trends might indicate a potential interplay between the
two features.
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Figure 4.3: Amplitudes of the two features observed in intermediate layers, exhibiting opposites
trends. As the amplitude of the first feature (black) increases with layer thickness, the amplitude
of the second feature decreases.

For further understanding of this unique Cp signature, we calculated the entropy, S, of the
system for each of the 21 steps by integrating Cp

T
vs. T in small temperature intervals of 1mK

from base temperature up to 5K. The resulting S is plotted against the film thickness in Fig.
4.4(a). It is evident that the entropy initially decreases, but then peaks before decreasing again.
Intriguingly, the entropy peaks at the 9th step with a "critical thickness" of 13.65nm, which is
the first layer to exhibit metallic behavior at low temperatures (its R(T ) curve is shown in Fig.
4.1(c)) and to display a second feature in Cp, presumably resulting in this excess entropy.

(a) (b)

Figure 4.4: The entropy, S, of the system at different stages. (a) S vs. the film’s thickness, d,
calculated up to 5K. A sharp peak can be observed at the 9th step, marked as the "critical
thickness". (b) Detailed plot of S in temperature intervals of 1mK for selected layers: a thin
layer (5th) exhibiting a "normal" S behavior, layers of intermediate thicknesses (9, 13) showing
anomalies in the S behavior, and S of the thickest layer (21) exhibiting "normal" S behavior again.
The black dashed linear lines serve as guides to the eye, aiding in identifying the temperature
at which the slope deviates.
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Figure.4.4(b) presents the entropy as a function of temperature for selected experimental
stages. Notably, there is a change in the slope of the S(T ) curve between the 9th and 13th
steps. This change in slope isn’t observed for the 5th (thinner layer) or the 21st layer (thickest
one), but only for the intermediate layers, at temperatures ranging between 3.56K and 3.85K.
Consequently, this change in slope leads to the generation of excess entropy (Fig.4.4(a)).

In addition to the second dominant feature in Cp, which directly impacts the entropy signature
at these intermediate layers, we observed another unique characteristic at these thicknesses: a
shift in the dominant heat carrier type, which will be discussed next.

Information about the dominant heat carriers can be obtained from Eq.3.4, where β is the
coefficient associated with the phononic contribution to heat transport in the system. Therefore,
the value of β reflects the extent to which phonons are dominate as heat carriers. β values were
extracted from the data (Fig.4.1) and plotted against the layer thickness (d) in Fig. 4.5(a).
The plot shows a generally linear trend, consistent with previous experimental observations [35].
However, at intermediate thicknesses, where the Cp/T signal is particularly high and remains
relatively constant with T 2, the true β values become obscured. At these stages, the high signal
effectively buries β, resulting in calculated values that appear extremely small.

Equation 1.1 offers additional insights into the predominant heat carriers of Cp through the
analysis of the slopes (m) of the Cp curves on a log-log scale (log(Cp) versus log(T ) curves),

m =
dlog(Cp)

dlog(T )
. A slope of 1 would suggest dominance by electrons, while a slope of 3 would

indicate dominance by phonons. In Fig. 4.5(b), the extracted m values are shown vs. the
thickness, d. Initially, m is approximately 3, indicating phonon dominance. However, for thinner
to intermediate layers, it decreases to a value between ∼ 1.5− 2.3, indicating that electrons also
become significant heat carriers. While both electrons and phonons always contribute to heat
transport, the dominant carrier type shifts. This slope of approximately 3 is restored for the
thicker layers, where phonons once again predominantly govern heat transport.
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(a) (b)

Figure 4.5: Analysis of the dominant heat carriers. (a) Plot of β vs. the film thickness (d), for
different evaporation steps (2nd and 11th steps excluded for clarity). Noticeable drop in β value
is observed at the intermediate layers. (b) Slope of log-log scale of the Cp (m) plotted vs. d. The
slope is approximately 3 at the start and for thicker layers, but decreases and varies in between.

The values of β and m reveals the predominant heat carrier during the SIT, whether they
are electrons or phonons. High β values, along with m of 3, indicate the prevalence of phonon
heat carriers. This is evident in both the thinnest and thicker layers. A dramatic decrease in
β values, reflects how the electronic contribution dominates, effectively burying the β signal.
This, along with a drop in m, this indicates a shift towards electron dominance as heat carriers.
The change in m values observed in the thinner to intermediate layers, with a m between 1.5
and 2.3, reflects variations in the dominant heat carriers. While phonons are the dominant heat
carriers in the thicker and thinnest layers, at the intermediate layers, electrons also contribute
significantly to heat transport. The subsequent restoration of a slope of ≈ 3 for the thicker
layers implies a return to phonon dominance. This trend is also reflected in the gradual increase
in β values within these thickness regimes. These findings provide evidence for unique behavior
in the intermediate thickness layers, suggesting a fundamental difference in their properties and
necessitating further discussion.

The discovery of a second pronounced feature in Cp for these layers is particularly signifi-
cant, as it strongly suggests an additional, different, phase transition characterized by notable
electronic modes. These pronounced electronic modes are evident by the change in heat carriers,
as previously discussed, and can be clearly observed in the flat curves of the data (Fig.1.4(d)).
Given that Cp measurements are highly sensitive thermodynamic measurements involving thor-
ough equipment filtration, explanations involving artifacts are less plausible. Thus, the presence
of an additional phase with increased electronic modes is suggested.

It should be noted that a similar experiment on granular Pb [35] did not show additional
Cp structure at intermediate d. This discrepancy can be attributed to the substantial phononic
contribution of the studied material, Pb [35, 57], which may have overshadowed this second
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feature. In our experiment, the choice of a material with a higher ΘD, i.e. In, as discussed in
the Motivation chapter (2, enabled us to observe this phenomenon.

The key question is whether this second prominent feature indicates an additional phase
transition, potentially pointing to the existence of an intermediate metallic state during the SIT,
or does it represent a highly fluctuative zone with strong quantum fluctuations correlated with
the emergence of electronic modes, such as vortices or superconducting fluctuations.

Ascribing the second Cp feature as an indicator of a genuine metallic ground state poses
several challenges. The feature is characterized by a sharp increase, suggesting the sudden
appearance of additional degrees of freedom within the system that persist to high T . The
signal does not revert to the normal state signal but remains relatively flat and constant with
T 2, implying that fluctuations in this state persist up to temperature well above Tc.

The nature of this sudden jump, along with the persistence of fluctuations at temperatures
significantly above Tc, remains unexplained and requires further investigation and discussion.
Future research involving the characterization of disordered materials with higher ΘD values
holds promise for shedding light on the nature of this second feature. However, despite the lack
of full understanding, this behavior bears a strong resemblance to the heat capacity signature
observed during glass transitions, where two specific heat peaks were identified [60, 61], with
measurements typically showing a peak followed by an anomaly jump, after which the signal
remains high and constant. This behavior is attributed to glasses being out-of-equilibrium sys-
tems with long relaxation times. The heat capacity measurement of a classic polymeric glass,
polyvinyl acetate (PVAc) [62], shown in Fig. 4.6(a) alongside one of our intermediate stages
(9th), highlights the similarity between their thermodynamic signatures. This resemblance may
suggest the existence of a true BM ground state and supports the ’glassy model’ for this phase,
as the thermodynamic signatures exhibit characteristics typical of glassy phases.

(a) (b)

Figure 4.6: The resemble between the thermodynamic signature of (a) the heat capacity of glass
polymer (reproduced from [62]) and (b) the intermediate In stages measured. Both exhibits a
sharp jump and signal that persists high and constant at higher T s.
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While it remains uncertain whether this observation provides definitive evidence of a real
metallic ground state, the presence of an additional phase with a unique thermodynamic signa-
ture is plausible. Clearly, this work requires additional theoretical support.

In summary, our investigation of the specific heat of ultra-thin layers of In has yielded
new results, particularly within the intermediate thickness layers. The key findings can be
summarized as follows:

1. Three different types of Cp curves are observed, representing different transport behaviors
(see Fig. 4.7(a)). These variations in Cp behavior indicate distinct thermodynamic regimes.
The different features observed in the films, along with the associated phenomena and
transitions, occur at the same temperature range, underscoring that the system’s behavior
is closely tied to this Tc. For example, the features of the 4th and 9th steps (insulating
and metallic films, respectively) coincide at exactly the same temperature, as highlighted
by the green dashed line in the figure.

2. Two features in Cp are observed at the intermediate layers (see Fig. 4.7(b)), which lead
to excess entropy at these stages (Fig.4.4). This phenomenon suggests complex thermo-
dynamic behavior near the SIT, including the presence of strong quantum fluctuations,
additional thermodynamic states, or degrees of freedom that contribute to the overall
entropy of the system and may indicate a second phase transition occurring within the
material.

3. A change in β and Cp

T
(T 2) slope (m) is observed, indicating variations in the dominant

heat carriers across different film thicknesses (see Fig. 4.5). In the thinnest layers, where β

values are high and m is 3, phonons appear to be the dominant heat carriers, a dominance
that is also restored in the thicker layers. However, in the intermediate layers, a shift in
dominant heat carriers is observed, with β values becoming obscured and m values ranging
between 1.5 and 2.3. This suggests that the underlying physics governing heat transport
in the material undergoes significant changes near the SIT, probably due to alterations in
the electronic and phononic contributions.

These findings provide significant revelations into the thermodynamic properties of ultra-
thin granular In layers and shed light on the complex behavior of systems near the SIT. Further
research and development of theory are needed to explore and explain these phenomena in greater
detail.
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(a) (b)

Figure 4.7: (a) Cp vs. T curves of selected representative films: insulating (4th), metallic (9th
and 10th), and superconducting (20th and 21st) films. All curves display features around the
same temperature, T ≈ 3.8K, within the range of ≈ 3.6K to 4.05K, as indicated by the light
blue and gray dashed lines. Interestingly, the features of the 4th and 9th steps coincide at the
same temperature, highlighted by the green dashed line. (b) The reduced Cp curve of the 12th
layer, with a thickness of 17 nm, represents the intermediate layers that exhibit a secondary
feature in Cp and weak phonon dependence. The weak phonon dependence is reflected in the
curve’s nearly constant behavior at higher temperatures.
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4.2 Transport measurements of SNS junction- SLG/SC-dots
bilayer devices

In the previous section we described the study of bosonic phases using a thermodynamic ap-
proach. Moving forward, we will delve into transport measurements to better understand the
bosonic mechanism based on NS junctions, the building blocks of these bosonic phases. To
achieve this, we engineered SC Josephson array devices consisting of a single layer of graphene
(SLG) covered with an ordered array of SC InO dots, forming arrays of NS junctions. As il-
lustrates in Fig. 4.8, we envision that our devices are composed of superconducting InO dots
that exhibit electronic granularity (depicted as gray ’clouds’ in the sketch). Each dot comprises
several electronic grains that are Josephson-coupled. These electronically-granular dots form an
array, with inter-dot connections dominated by Andreev Reflection (AR) processes.

Figure 4.8: Sketch illustrating the structure of our SNS/SLG devices with superconducting InO

dots. Each dot is electronically granular, consisting of multiple grains (represented by gray
’clouds’) that are Josephson-coupled via Josephson junctions (JJ). Inter-dot connections are
facilitated by Andreev Reflection (AR) processes occurring in the SLG regions between the dots.

We specifically designed the dots to be 1µm in diameter- large enough to maintain supercon-
ductivity, and spaced at an inter-dot distance of 200nm, that results in devices exhibiting BM
behavior. A characteristic transport measurement of a typical device is shown in Fig. 4.9, where
the R(T ) measurements display saturated resistance at low temperatures for various Vg values.

A continuous InO film (without a SLG underneath) does not exhibit BM state during the
SIT, as shown in the R(T ) measurements in Fig. 3.12. Thus, fabricating dots with specific
parameters on top of SLG creates a unique situation where we access the BM state within a
device comprising arrays of NS junctions. This method uniquely positions us to investigate the
building blocks of the bosonic phase within the BM regime.
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Figure 4.9: R(T ) measurements at different Vg values for a SLG/InO dot array device, with the
Dirac point at Vd = 70V . The device exhibits BM behavior across the various Vg values.

Using both CVD graphene and exfoliated flakes for the SLG layer, we studied two distinct
geometries: a two dimension matrix of dots (2D) and a single row of dots (1D). In total, we
measured 6 large 2D devices (200µm × 115µm, containing 167 × 95 junctions), 6 smaller 2D
devices (with varying numbers of junctions), and 5 devices with 1D geometry, each containing 17
junctions. All devices from the same geometry exhibited similar results, ensuring the reliability
of our findings. Here, we will present representative examples along with the main conclusions
drawn from this study.

Our investigation uncovered a range of intriguing phenomena and features in these devices,
offering insights into the underlying physics of the system. Through R(Vg) measurements, we
observed effects related to the internal distances within each dot, highlighting the significance of

the dot’s internal structure. Additionally,
dI

dV
(Vdc) measurements revealed the distinct behavior

of the varied AR processes within this macro-metallic structure, emphasizing the complexity of
electron transport in such a system.

Some of the results presented are not yet fully understood, but they offer valuable insights
into how electronic granularity and AR processes influence the device’s overall behavior. These
findings contribute to a broader understanding of the system’s properties and suggest potential
future research directions.

While some additional results do not directly align with the primary focus of this research,
their insights remain valuable. Therefore, these supplementary findings are included in the
Appendix (B,C). This material covers extra measurements conducted at temperatures ranging
from 300mK to 20K and under varying magnetic fields up to 9T , along with their analysis.

4.2.1 Resistance versus Vg measurements

R(Vg) curves were measured at base temperatures of 0.33K or 1.6K (depending on the cryogenic
system used), with the primary objective of assessing the controllability of carrier density and
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identifying the Dirac point (DP). The R(Vg) measurements exhibited indications of supercon-
ductivity within the graphene, arising from its proximity to the SC InO dots. These signs of
superconductivity manifested as a second peak- the ’superconducting Dirac point’ (SDP) and
fluctuations in R(Vg).

Superconducting Dirac point
The R(Vg) curve for large 2D arrays, such as the one shown in Fig. 4.10(a), revealed the presence
of a second charge neutrality point. This is illustrated in Fig. 4.10(b), where the DP is observed
at Vg ≈ −47V , along with an additional peak at Vg = −9V . This second Dirac point bears
resemblance to the SDP recently observed in our group [39], which was suggested to be related
to the Andreev reflection (AR) processes in proximitized low n superconductivity regions within
the graphene. The appearance of a SDP in the R(Vg) curve serves as an indication of induced
superconductivity in regions of the graphene, underneath the SC dots.

(a) (b)

Figure 4.10: (a) Large 2D InO dot matrix with dimensions of 200µm × 115µm, containing
167×95 junctions, and (b) its R(Vg) curve, showing two charge neutrality points at Vg = −9.2V

and Vg ≈ −48V . Measurements were conducted at B = 0T and T = 3K.

Such a well-defined SDP was observed in devices constructed from large dot matrices, such
as those containing 18× 31 junctions or more. However, when the matrix size was reduced and
the number of junctions decreased, the SDP did not distinctly appear separate from the DP. In
some cases, it seemed that the DP widened and ’contained’ the SDP without a clear boundary
between them. Additional effects on the SDP are discussed in Appendix C.0.1.

Another phenomenon observed in devices with fewer junctions was resistance fluctuations,
which we describe next.
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Resistance fluctuations

As mentioned, during the measurement of devices with fewer junctions, both CVD and
exfoliated-based SLG, the SDP was not distinctly separated from the DP, and resistance fluc-
tuations were observed as a function of R(Vg), even though one would expect these fluctuations
to average out given the presence of a few junctions. These fluctuations were most pronounced
(with the highest amplitude) near the DP and persisted well above Tc (T ≫ 3.5K). As the tem-
perature increased, the amplitude of these fluctuations gradually decreased, eventually flattening
out, resulting in a smooth R(Vg) curve. Figure 4.11(a) shows an example from a 2D dot device,
where resistance fluctuations are presented across the entire Vg range at different temperatures.
The fluctuations are most pronounced at 1.66K and around the DP, measured at approximately
Vd = −14V . At T = 12K, the fluctuations are significantly reduced but still persist, and by
20K— well above Tc— the R(Vg) curve becomes practically smooth.

In Fig. 4.11(b), the resistances at 1.66K (black curve) and 8K (blue curve) are shown
after subtracting the resistance background from each, highlighting the fluctuation amplitudes.
Although the fluctuations are reduced at higher temperatures, they persist above Tc and retain
their overall structure. While the faster fluctuation features are ’erased,’ the larger structural
features remain. This underscores that these fluctuations are not noise but rather inherent
to the dot array and its periodicity. The fluctuations are most pronounced in the DP regime
(around Vd = −14V ). The disappearance of fluctuations with increasing temperature is expected,
primarily indicating the loss of mesoscopic electronic coherence. Additionally, this phenomenon
can be attributed to the destruction of superconductivity as the temperature rises. Notably,
these fluctuations persist at temperatures well above the Tc of InO, which is consistent with
previous studies [39] that have shown superconductivity in InO can exist above its transport
critical temperature.
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(a) (b)

Figure 4.11: R(Vg) at different T for a 2D dot array device with 4 × 5 junctions. Resistance
fluctuations are clearly seen, with the most pronounced occurring at 1.66K and near the DP.
(a) Raw R(Vg)s at varied T s. As the temperature increases, the fluctuations are suppressed,
resulting in a smooth R(Vg) curve at 20K. (b) Resistance fluctuations at 1.66K (black curve)
and 8K (blue curve) after background subtraction, highlighting the persistence of fluctuations
at higher temperatures, particularly in the DP regime.

Figure 4.12 shows an additional set of R(Vg) measurements of device with 11× 4 junctions.
Measurements were taken at B = 0 and various temperatures, ranging from a base temperature
of 0.33K to 20K (panel (a)), and at T = 0.33K under different magnetic fields (panel (b)). The
R(Vg) fluctuations are influenced by temperature, but are not significantly affected by applied
magnetic fields. The amplitude of the fluctuations remains relatively consistent up to a field of
5.5T . This is illustrated in panel (b), where ∆R, the R(Vg) curves normalized to their resistance
value at the DP (Vd ≈ 75V ), are shown with slight offsets for clarity.
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(a) (b)

Figure 4.12: Oscillatory R(Vg) measurements (a) At 0T and different temperatures, and (b) ∆R,
the R(Vg) curves normalized to their resistance value at the DP (Vd ≈ 75V ), with a slight shift
from each other for clarity. Measurements in (b) were taken at a base temperature of 0.33K
under varied magnetic fields.

Interestingly, the applied magnetic field did not influence the amplitude of these fluctuations,
despite expectations that it would suppress superconductivity. However, it is worth noting that
the 5.5T field is below the critical magnetic field (Hc) of our superconducting InO, which is
approximately 8T at T = 1.66K [63]. Moreover, interestingly, the structure of these fluctuation
remains unaffected by the magnetic field.
Oscillations of an order parameter, such as the observed resistance fluctuations, at varying
magnetic fields would typically suggest orbital effects like the Aharonov-Bohm effect [64]. If this
were the case, we would expect these fluctuations to vanish under a magnetic field. Furthermore,
if these fluctuations were caused by magnetic flux circulating within the sample, the magnetic
field would alter the electron wave interference patterns. Additionally, the magnetoresistance of
these devices did not exhibit periodic variation with the field. The lack of changes in fluctuations
despite the applied magnetic field suggests that other mechanisms are likely responsible for
the observed phase fluctuations. One possibility is specific AR scattering patterns within the
graphene, occurring between its N and S regions, induced by the superconducting InO dots.
We propose that these fluctuations may correspond to standing waves, described by multiples
of KF · l = N (where KF is the Fermi wave vector, l is a constant distance, and N is an
integer), which are independent of the magnetic field and potentially influenced by the dots.
This scenario aligns with previous theoretical work by Prof. Shimshoni’s group and ours (see
supplementary materials of [40]), which demonstrated that the critical current (Ic) of a single
InO/SLG Josephson junction oscillates with gate voltage, considering the formation of Andreev
bound states (ABS) within the junction, as shown in Fig.4.13. Additionally, these oscillations
were most pronounced near the overall maximum at the CNP. These features were expected to
be observable only in very clean devices comprising a single Josephson junction, as in larger
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devices composed of many N-S junctions, they would average out. Interestingly, in our devices
with a few N-S junctions, resistance fluctuations persist and do not fully average out, contrary
to initial expectations.

(a)

Figure 4.13: IC evaluation in a single InO/SLG SNS Josephson junction as a function of EF (in
units of ∆). IC shows an overall maximum near the CNP, along with several oscillations arising
from Andreev bound states. U represents the energy shift due to the difference in electrostatic
potential induced by the superconducting InO. Reproduced from the supplementary materials
of [40].

To further investigate the fluctuations in R(Vg) and uncover their underlying mechanisms,
we conducted a Fast Fourier Transform (FFT) analysis. Here, we present one analysis of the
R(Vg) curve at 1.66K, depicted in Fig. 4.11. Since the fast fluctuations are superimposed on
an overall common background in R(Vg), the first step in the analysis was to normalize the R

curves to the smooth background— specifically, the resistance measured at 12K. The resultant
normalized R(Vg) curve is shown in Fig. 4.14(a).

Fluctuations in R(Vg) reflect changes in the carrier density, n, which directly affect the Fermi
wave vector, kF . In a 2D system, this is described by the relation kF =

√
2πn(Vg − VDirac).

Here, VDirac is measured at −14V , and n = 6.56× 1014 accounts for the 285nm thick SiO layer
on the chip (following the equation: q = ne). The representation of R(kF ) is shown in Fig.
4.14(b). Transforming R(Vg) to R(kF ) helps link fluctuations to a physical length scale. In our
setup, we propose that the current between the SNS junctions in graphene forms a ’standing
wave’, described by kF ×λF = 2πn, where λF is the Fermi wavelength. This allows us to convert
between R(Vg) and R(kF ). Applying FFT on R(kF ) reveals the main length scale L (the Fermi
wavelength λF ) of these fluctuations. The results, with the X-axis converted to real L values,
are shown in Fig. 4.14(c).
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(a) (b)

(c)

Figure 4.14: The analysis process used to detect the physical length scale related to the resistance
fluctuations. (a) Normalized resistance at T = 1.66K, normalized to the smooth resistance
measured at T = 12K. (b) Transformation from R(Vg) representation to R(KF ) representation.
(c) FFT results of R(KF ) curve, which extracting L.

The FFT analysis revealed fluctuations in KF with length scales ranging from approximately
6nm to 45nm, indicating the presence of an intrinsic length scale in our system. This result was
consistent across all six smaller 2D array devices measured.

We attribute these findings to the emergent granularity of our superconducting InO. Each
dot consists of smaller electronic grains, varying in distance and coupled to each other via
Josephson junctions. Given the small size of our dots (1µm), only a few dominant distances
exist within each dot, as identified through FFT analysis. Additionally, the short length scale
of R(Vg) fluctuations aligns with the superconducting pair coherence length, ξpair, which is
estimated to range between 5nm and 30nm [65]. This suggests that R(Vg) fluctuations are
primarily influenced by the dot’s intrinsic length scale— specifically its granularity and pair
coherence length— rather than by its overall size or junction length. In this sense, the observed
fluctuations offer a window into the microscopic structure of the grain granularity. Due to the
presence of multiple dominant length scales (each associated with a specific ξpair), the fluctuations
lack a clear periodicity. In contrast, conductance measurements as a function of the bias voltage
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revealed well-defined oscillations, as discussed next.

4.2.2 Conductance versus Vdc

In the following section, we compare the differential conductance (
dI

dV
(Vdc) curves from two

typical SLG/SC devices: a 1D row of 17 sequential dots (see Fig. 4.15(a)) and a small 2D array
of 16× 5 dots (see Fig. 4.15(b)). Both devices were fabricated as detailed in the Experimental
Methods section (3.2), under a partial oxygen pressure of approximately 1×10−5 mbar, resulting
in disordered superconducting dots with a Tc of ∼ 3.5K. All electronic measurements were
conducted in a He3 fridge at T = 0.33K under a 0T magnetic field.

(a)

5 µm

(b)

5 µm

Figure 4.15: Optical microscope images of 1D (a) and 2D (b) samples of SLG/SC-dot-array
configurations.

To ensure comparability, the
dI

dV
(Vdc) measurements were normalized to their Vdc = 30mV

values to account for variations in the resistance backgrounds of the different devices. The
dI

dV
(Vdc) measurements exhibit not only energy gap peaks (or dips) indicating superconductivity,

but also unique oscillation patterns that intricately depend on both Vdc and Vg. These oscillations
occurred both within and outside the density of states (DOS) gap, with distinct frequency
differences between the 2D and 1D devices. The most pronounced patterns were found in the
single-row (1D) devices.

The complex structure of the
dI

dV
(Vdc) curves is attributed to the interplay of three funda-

mental processes, concurrently operating within the system;
1. A depletion of the electronic DOS around the Fermi level due to the Altsuler-Aronov (AA)
mechanism of electron-electron interactions in disordered films [66].
2. A Superconducting gap, ∆, in the graphene regions below the InO dots due to the proximity
effect [40], each with an expected bias scale of ∆InO ≈ 0.7mV [55].

These two effects were anticipated. However, the data also revealed an unexpected third
phenomenon:
3. Electronic quantum interference effects, which depend on the Fermi velocity of graphene,
VF ≈ 106m/s, and the periodic structure of superconducting-normal region interfaces.
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Fig. 4.16(a) displays the conductance (G) measurement (at Vdc = 0) of a 1D device, plotted
as a function of Vg. It can be seen that G exhibits a dip near Vg ∼ 0. A closer look reveals
that this broad dip is composed of two dips- one corresponding to the DP (Vg ≈ −10V ) and the
other, at Vg = −29V , to the SDP, indicating the presence of superconductivity in the graphene.

In Fig. 4.16(b), the
dI

dV
(Vdc) curves at different Vg values are depicted, spanning the electron

side, the DPs regime, and the hole side. All curves exhibit a fairly similar DOS ’background’

shape, including a broad dip (in which
dI

dV
< 1) and a characteristic superconducting gap, ∆.

However, the key finding is the presence of discernible oscillatory patterns in the
dI

dV
curves at

different Vg values, which vary in their patterns. The presence of these oscillations depends on
the measured gate voltage and can manifest throughout the entire Vdc range, exclusively outside
the gap, or not at all. To illustrate this more clearly, selected curves depicting oscillations at
different Vdc regimes are individually plotted in sub-figures (c-h) of Fig. 4.16.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.16: (a) Conductance versus Vg of the 1D device and (b) corresponding
dI

dV
(Vdc) mea-

surements at different gate voltages. The measurements were taken at T = 0.33K and B = 0T .

(c-h) Selected
dI

dV
vs. Vdc curves at different Vgs.

In Fig. 4.17 the conductance vs Vg and the
dI

dV
(Vdc) measurement of a 2D device are

presented. As can be seen in Fig. a4.17(b) this resulted in varied
dI

dV
curves’ shapes- including

zero bias dips, peaks and "in between" types of shapes. Besides their extremum ’type’, the
dI

dV
s

differ also by their gap’s width, depth, at their coherence peaks. A glimpse of the rich diversity
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measured at the
dI

dV
s, can be seen in Fig. 4.17 (c-h), where chosen curves are shown separately.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.17: 2D device (a) G(Vg) of the device (b)
dI

dV
vs Vdc, at varied Vgs. (c-g) Chosen

dI

dV
s from Fig. 4.17 (matching color code). Peaks, dips, varies gap widths and divergent curves

shapes can be seen at the various gate voltages.

Various fine features are apparent in the
dI

dV
(Vdc) curves, in both the 1D and 2D devices.

In the subsequent subsections, we delve into a detailed examination of the diverse oscillation
patterns.

In order to analyze appropriately these results, one would like to decompose the different
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physical contributions of the data. One naive way to do so would be to employ a simple Fast
Fourier transform (FFT ). However, the intricacies involved largely rule out a 2D Fourier trans-
form of both Vdc and Vg. Even attempting a Fourier transform solely for Vdc at a fixed Vg where
the oscillatory behavior is unmistakable (see Fig. 4.18), no distinct peak in frequency is evident.
This lack of clarity in frequency peaks makes it challenging to draw meaningful conclusions from
the Fourier transform analysis.

(a) (b)

Figure 4.18: FFT analysis of the
dI

dV
(Vdc) measurement of (a) 1D sample at Vg = −49V , appears

in the inset. Even though a clear oscillation pattern is seen in the raw data, the FFT didn’t

result in a distinct peak. Same in (b) for the 2D device, of
dI

dV
(Vdc) measurement at V g = −7V .

In addition, such an analysis method requires separate calculations for each individual Vg

value in an attempt to identify repeating patterns. Clearly, a more useful and efficient analysis
tool is required. Working in collaboration with Berkovits ([67]), this led us to employ the
Singular Value Decomposition (SVD) technique, which was found to be systematically useful
in analyzing our results.

4.2.3 The SVD method

The SV D technique has a wide range of applications in various fields, including data compres-
sion [68–71] and machine learning [72, 73]. It holds significant potential for analyzing complex
experimental data, particularly data arising from distinct physical mechanisms concurrently in-
fluencing the results. By adjusting a control parameter, these mechanisms can be modulated to
varying degrees, eliminating the need for prior assumptions in modeling their contributions to
the measurements.

In our study, we harness the power of SVD to analyze the complex
dI

dV
measurements of

the 1D and 2D SC dots arrays, that exhibit a pronounced dependence on both bias and gate
voltages, as can be seen in Fig. 4.16(b) and 4.17(b). Oscillations in relation to the dc voltage,
with seemingly distinct periods in different regions, are observed. Through SVD analysis, we aim
to untangle this intricate data, gaining valuable insights into the dependence of experimental
measurements on the two parameters and the underlying physics.

57



Results and Discussion

  

V

U1

U2

U3

U4

X(U,V) X  Matrix

X1,1

X2,1

X3,1

X4,1

X1,2 X1,3

X2,2

X(k=1)  Matrix

The X matrix is decomposed to modes using SVD
for example the k=1 mode

(k=1)

V

U1

U2

U3

U4

X(U,V)

M
od

e 
1

V1

V1

V2 V3

V2 V3

X2,3

X3,2 X3,3

X4,2 X4,3

•

• • •

•
•

•

•
•

•

•
•

•

• • •
•
•

•

•
•

•

•
•

•

• •

•••

a

d

b

c

X1,

X1,1

X2,1

X3,1

X4,1

X1,2 X1,3

X2,2 X2,3

X3,2 X3,3

X4,2 X4,3

(k=1) (k=1)

(k=1) (k=1) (k=1)

(k=1) (k=1) (k=1)

(k=1) (k=1) (k=1)

Figure 4.19: A schematic cartoon of the SVD procedure. In (a), a physical observable X,
dependent on two parameters U and V , is measured. The procedure involves setting Ui (i =
1, 2, . . .) while changing V , resulting in the curves for X(Ui, V ) illustrated in the graph. In (b),
to represent the data as a matrix X, V is discretized into Vj, and each value of X(Ui, Vj) is
inserted as the matrix element Xi,j. Thus, each row corresponds to the measurements for a
given value of Ui. The SVD procedure is applied, yielding a series of matrices X(k), with the
original matrix expressed as a sum of modes X =

∑
k σkX

(k), where σk is the singular value
amplitude, and the modes are ordered by magnitude from the largest. In (c), the matrix for
the largest mode, k = 1, is represented. Due to the structure of the SVD procedure (see text),
each matrix element in X(k=1) is equal to U⃗

(k=1)
i V⃗

(k=1)
j . Thus, each row is equivalent to the same

vector V⃗ (k=1) multiplied by a different constant U⃗
(k=1)
i . This relationship is illustrated in the

plot (d), corresponding to the curves X(Ui, V ) for the first mode.

SVD, a linear algebra technique, allows the rewriting of any matrix with dimensions M × P

as a sum of amplitudes (termed singular values) multiplied by an outer product of two vectors,
where the number of terms is determined by min(M,P ). The singular values, enabling the
approximation of the original matrix through a sum over a reduced number of the larger terms,
significantly fewer than min(M,P ). Details of this process can be found in our recent paper [67].

Given that our results depend on two parameter Vdc and Vg, one can organize the data
by performing M measurements of one parameter where for each such measurement the second
parameter is measured P times (see Scheme 4.19a), into an M×P matrix. SVD proved invaluable
in reducing the dimensionality of our data while preserving essential information and revealing
hidden patterns, such as oscillation patterns observed in the conductivity measurements.

The initial step in applying SV D analysis involves transforming the experimental measure-
ment X(U, V ), dependent on parameters V and U , into a matrix. Consequently a M×P matrix
Xij = X(Ui, Vj) can be constructed as schematically illustrated in Fig. 4.19.

In the SVD procedure, the matrix X is expanded as a sum of amplitudes σk multiplied
by M × P matrices X(k). These matrices are constructed by an outer product of two vectors
U⃗

(k)
i and V⃗

(k)
j of sizes M and P , respectively. Explicitly, X is decomposed into X = UΣVT ,
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where U and V are M × M and P × P matrices, respectively, and Σ is a diagonal matrix
of size M × P with a rank r = min(M,P ). The r diagonal elements of Σ are the singular
values (SV) amplitudes σk of X. These SVs are positive and can be ordered by magnitude
as σ1 ≥ σ2 ≥ . . . ≥ σr. As discussed, X can be expressed as a series of matrices X(k), i.e.,
Xij =

∑r
k=1 σkX

(k)
ij , where X

(k)
ij = UikV

T
jk = U⃗

(k)
i V⃗

(k)
j . The sum of the first m modes provides

an approximation X̃ =
∑m

k=1 σkX
(k) to X, representing the minimal departure between the

approximate measurements, X̃, obtained using m(M + P + 1) independent variables compared
to the full energy spectrum, which requires MP variables. This forms the basis for the use of
SVD as a data compression method. Since, for most cases (including those discussed here), the
SVs drop rapidly as a function of k, a good approximation of X is achieved. Indeed, examining
the SVs as a function of k, typically involving a Scree plot plotting λk = σ2

k vs. k on a logarithmic
scale, serves as the first step in analyzing the data.

The SV amplitudes, σk, corresponding to significant modes (typically with k ∼ O(1)), along
with the associated vectors U⃗ (k) and V⃗ (k) for these modes, play a crucial role in interpreting
experimental data. This importance can be illustrated through an analogy with one of the most
widely used experimental data analysis methods, the Fourier transform. In the case of a Fourier
transform, the experimental results X(Ui, Vj) can be expressed as

∑
ki,kj

fki,kj sin(ki) sin(kj).
Superficially, the structure bears similarity to the SVD sum, as both involve an amplitude
multiplied by two vectors or functions. In both methods, the goal is to identify amplitudes
significantly larger than others to characterize the data. Furthermore, the general dependence
of these amplitudes on the mode or frequency can offer insights into the overall characteristics
of the system, such as the presence of 1/f noise.

Nonetheless, significant distinctions exist. The SVD sum involves just r = min(M,P ) ampli-
tudes, a stark contrast to the MP amplitudes present in the Fourier transform. This reduction
in the number of terms in the SVD sum arises because, unlike the fixed vectors involved in the
outer multiplication of the Fourier transform, the vectors in SVD are optimized to achieve the
best fit with a minimal number of modes. Consequently, in contrast to the Fourier transform,
valuable insights are gained not only from the amplitudes but also from the optimized vectors
U⃗ (k) and V⃗ (k) associated with contributing modes.

With that being said, now we will elaborate on these somewhat vague ideas by implementing
them using concrete experimental data.

4.2.4 SVD analysis of the data

In Fig. 4.20, a scree plot illustrates squared SV amplitudes (λk = σ2
k) in relation to the mode

number k. Notably, the largest SV amplitude (k = 1) is orders of magnitude greater than
subsequent modes. Beyond k = 3, a power-law behavior emerges. Specifically, the 1D chain
exhibits a power law described by λk ∼ k−1.3 (Fig.4.20(a)), while the 2D sample follows a steeper
power law, λk ∼ k−4 (Fig.4.20(b)). This disparity in power laws is significant; as demonstrated in
the appendix of Ref.[74], a power law of λk ∼ k−1 corresponds to 1/f noise. Consequently, modes
k = 3−15 for the 1D sample appear to align with characteristics of 1/f noise. In contrast, the 2D
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sample seems well-characterized by the initial few modes, as the contribution from subsequent
modes rapidly diminishes. This observation is reinforced by noting that measurements of the
1D sample exhibit greater noise compared to those of the 2D sample (Figs.4.16(b) and 4.17(b)).
This power-low behavior in lambda values was repeated in other 1D and 2D devices that were
analyzed using SVD, where a matching behavior of power-law was found. Their scree plots can
be found in the Appendix (D).

(a) (b)

Figure 4.20: λk vs. k for the (a) 1D and (b) 2D samples. The first mode is orders of magnitude
larger than the rest, while the second mode deviates from the power-law behavior of (a) λk ∼ k−1.3

and (b) λk ∼ k−4 observed for the larger modes.

The SV D’s λ values and their power behavior provide insights into which SV D modes hold

the common behavior and which offer fine corrections to the overall
dI

dV
behavior. It is evident

that the few-first modes (first to ∼fifth) capture the common features of the
dI

dV
curves. As the

mode number increases, their contribution to the universal behavior decreases following a power

law. In other words, higher modes primarily represent the fine corrections to the overall
dI

dV
behavior.

Now, let us delve into an examination of the contributions from the first few individual modes.
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(a) (b)

(c)

Figure 4.21: SV D analysis of a 1D dots device (a) the 1st mode, extracting the common data
background (b) 2nd mode, where the superconducting gap was extracted and marked between
the two red lines (c) the 4th mode, where the oscillations pattern can be seen.
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(a) (b)

(c)

Figure 4.22: SV D analysis of a 2D dots device (a) the 1st mode, extracting the common data
background (b) 2nd mode, where the superconducting gap was extracted and marked between
the two red lines (c) the 4th mode, where the oscillations pattern can be seen.
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The contributions of the first mode (k = 1) to the measured data are shown in Fig. 4.21(a)
for the 1D sample and Fig. 4.22(a), for the 2D sample, along with the associated vectors V⃗ (k=1)

and U⃗ (k=1). The differential conductance, dI/dV , as a function of Vdc for various values of Vg

is plotted, where the various values are coded with the same color code as in Figs.4.16, 4.17
respectively. As discussed, X(k=1) = σ1V⃗

(k=1) ⊗ U⃗ (k=1). The outer multiplication between these
two vectors has a transparent interpretation. Specifically, the vector V⃗ (k=1) captures the first
mode’s dependence of the differential conductance, dI/dV , on Vdc. Consequently, the vector
V⃗ (k=1) is multiplied by the term of the vector U⃗ (k=1) that corresponds to the appropriate value of
Vg. This relationship is visually evident in the main panels of Figs.4.21(a) and 4.22(a), where the
multiplication of V⃗ (k=1) by the corresponding value of U⃗ (k=1) is plotted for each term of U⃗ (k=1),
i.e., for each value of the gate voltage Vg.

Hence, the first mode derived from the SVD provides an overall insight into the behavior of
the differential conductance. For our samples, we associate this gross feature with AA deple-
tion in disordered metals. AA depletion manifests in a logarithmic increase in the differential
conductance, which is truncated at low voltage due to temperature. Indeed, in the case of the
1D sample, the first mode vector V⃗ (k=1) exhibits a broad minimum around Vdc = 0, followed
by a logarithmic increase (see Fig. 4.23(a)). For the 2D sample, the behavior is more intricate,
and a sharp minimum at Vdc = 0 appears, revealing a more distinct structure that needs further
explanation (see Fig. 4.23(b)). It’s noteworthy that, unlike modes in the Fourier transform,
SVD tailors its vectors to the specific measurements, as exemplified by the contrast between
V⃗ (k=1) for the 1D and 2D samples.

(a) (b)

Figure 4.23: The logarithmic increase in the differential conductance reflected in the first modes,
indicative of the Altschuler-Aronov (AA) effect, observed in the (a) 1D and (b) 2D samples.

Additionally, while V⃗ (k=1) captures the fundamental features of the experiment for the 1D
sample, it misses notable features observed in the 2D sample, such as the transformation of the
minimum at Vdc = 0 into a maximum for certain values of Vg. An examination of the behavior
of U⃗ (k=1) as a function of Vg reveals a close correlation with the behavior of G, as shown in Figs.
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4.16(a) and 4.16(a).
Next we turn to the second mode of the SVD analysis. The mode is plotted in Figs.4.21(b)

and 4.22(b). A very clear feature of X(k=2) of both samples is that distinct regions of behavior
are revealed as functions of Vdc. All curves cross at two values of V ′

dc = ±12mV for the 1D
sample and at V ′

dc = ±9mV for the 2D sample (marked between the two dashed red lines in the
figure). These values of V ′

dc correspond to the estimation of the superconducting gap in these
systems, and they are unequivocally revealed by the second mode of the SVD. Considering the
simpler 1D, which includes 17 junctions (dots) in series, one can expect to observe structure at
∆InO × 17 = 11.9mV . Remarkably, this aligns exactly with the point where the curves of the
second mode of the 1D sample intersect. For the 2D sample the shortest path across the sample
is of 12 junctions, corresponding to ∆InO × 12 = 8.4mV , not far from the estimation garnered
from the width of the second mode.

Furthermore, the 2nd mode offers valuable insights into the superconducting state present
in the system across different experimental stages. Both the SC gap width, as revealed by this
mode, and the extremum type of this mode provide significant information about the system’s
superconductivity. Upon analyzing the extremum amplitude of the 2nd mode at Vdc = 0 for each
measurement, a distinct crossover, contingent upon Vg, becomes evident. This dependence is
depicted on the same graph with the R(Vg) curve of the sample in Fig. 4.24, to discern underlying
physical phenomena.

(a) (b)

Figure 4.24: Extremum amplitudes of the 2ndSV D mode (dotted line) plotted with the device
resistance (black line) as a function of Vg. The dashed red line marks the zero baseline, above
which points are considered maxima, and below which they are considered minima, of the 1D (a)
and the 2D (b) devices. Interestingly, a change in extremum "type" of the 2nd mode is evident
at the DP regime.

It is apparent that a distinct trend emerges upon approaching the DP. As the system ap-
proaches the vicinity of the DP, a transition occurs from a peak in the 2nd mode amplitude to
a dip. This transition reverses as the system progresses to higher Vg values, with the dip trans-
forming back into a peak. Definitely, some change occurring in the vicinity of the DP, at both
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1D and 2D devices. To relate this pattern to possible signs of SC in the system, let’s examine
the dI/dV measurements of the 2D device, presented in Fig. 4.17, where peaks and dips were
identified. Taking the dI/dV measurement at Vg = −20V near the DP as an example, it exhibits
a peak in the raw dI/dV measurement (indicating a low barrier, Z, condition in the system).
This peak corresponds to a dip in the amplitude of the 2nd mode (with respect to the mode’s
vectors). This suggests that the low Z condition, which is in fact related to Vg, occurs in the
proximity of the DP, manifesting as a dip in the 2nd SVD mode. This agrees with the finding
mentioned earlier (subsection 4.2.1) that the strongest Josephson coupling, i.e., the lowest Z,
between low-n superconducting islands in SLG occurred near the CNP [39].

In the case of the 1D device, although peaks are absent in the dI/dV measurement (Fig.4.16),
a similar "flip" in the 2nd mode maxima is observed near the DP (Fig.4.24(a)). It is plausible
to propose that a dip in the 2nd mode amplitude could potentially serve as an indicator of low
Z state in the system, even in the absence of a peak in the dI/dV measurements. Interestingly,
we observed an additional phenomenon associated with the presence of a low Z state in the
system. By normalizing the amplitudes of representative oscillations in the raw dI/dV data to
their maximum (peak or dip) values at each Vg, we identified a discernible trend. As the system
approaches the DP, the oscillation amplitude decreases toward zero, resulting in a flat dI/dV

curve devoid of oscillations. This trend is illustrated in Fig. 4.25, where the oscillation amplitude
normalized to the extremum’s value at different Vgs for the 1D device is plotted alongside its
corresponding R(Vg) curve. The data shows that as the system nears the DP, the oscillation
amplitude decreases (compare to the maxima) and tends toward zero.

Figure 4.25: R(Vg) and the dI/dV s normalized oscillations amplitude of the 1D device. A
flattening of the dI/dV oscillations is evident at the DP regime.

While the source and mechanism of these oscillations are not yet understood, we note that
their presence diminishes in the DP regime—characterized by a low Z state— while they are
more robust outside of this regime. This decrease in oscillation amplitude in the DP regime
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suggests different occurrences affecting the AR processes and their intensity. It may be related
to the assertion that superconductivity is most robust in this regime, implying that the graphene
barrier is at its lowest there, facilitating tunneling between the SC puddles. This contrasts with
stages of the system where the barrier is stronger (V Dirac

g < |Vg|, indicating more electron or
hole carriers in the graphene inter-media). This stronger barrier may be the key to the different
oscillation amplitude, likely accounts for the presence of many scattering events and varied AR
processes, which manifest as oscillations in the dI/dV . However, this is only an assumption
attempting to explain the observed differences.

The higher modes of the SVD analysis expose two key insights into the differential conduc-
tance, evident in the oscillations with respect to Vdc. First, we observed that these oscillations
seem to exhibit a different period within the region of the superconducting gap compared to out-
side of it. Moreover, this phenomenon is more pronounced for specific values of Vg. As illustrated
in Fig. 4.21(c) and Fig. 4.22(c), where one of the typical higher modes (k = 4) is presented,
(other high modes, such as k = 3, 5, 6, show a similar, although somewhat noisier periodicity). It
is apparent that the amplitude and frequency of the oscillations differ for |Vdc| < V ′

dc compared to
|Vdc| > V ′

dc. This suggests that distinct processes may underlie the oscillations inside and outside
the gap. For the 1D sample, these frequencies are found to be 2.5mV for |Vdc| < V ′

dc, inside the
superconducting gap, and 1.9mV for |Vdc| > V ′

dc, outside of it. In the 2D device, which includes
multiple dot periodicities, the faster oscillations are averaged out as electronic interference effects
are washed out, resulting in much slower oscillations. These longer oscillations are of the order
of 10mV , which fits the scale of the energy gap of the array and are observed outside the DOS
energy gap.

Secondly, oscillations are observed both inside and outside the DOS gap, prompting further
investigation into their origin. The voltage scale associated with these oscillations suggests that
they might arise from electronic interference effects linked to the dot periodicity, pointing to a
characteristic length scale in the system. Using the linear dispersion relation with respect to

momentum, ∆P =
∆ϵ

VF

, and the relation ∆P · l = 2πℏ, we find l =
2πℏVF

∆ϵ
. In the 1D device,

for ∆V = 2.5mV outside the DOS gap, converting to energy terms using V =
E

q
, we obtain

∆ϵ = 4 × 10−22J . Substituting into the equation yields l ≈ 6µm. Since we attribute these
oscillations to different AR processes between the dots, it is reasonable to divide this distance by
2 (considering both forward and backward processes), resulting in l ≈ 3µm, a scale comparable
to the dot size of 1µm.

Had we only observed oscillations outside the DOS gap, several theoretical approaches could
have been explored, such as electronic interference effects and reflection patterns based on NSN
junctions- a theory discussed in the subsequent sub-section. While these calculations do not
quantitatively align with our data, they would have provided a plausible direction for further
investigation. However, a significant challenge arises with the oscillations observed within the
DOS gap, which are particularly puzzling. For ϵ < ∆, an incident electronic wave should decay
rapidly inside the superconductor, preventing propagation and thus the formation of oscillations.
Alternatively, due to the Klein paradox, such oscillations should not exist, as the wave might
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pass through with a probability of 1, also leading to an absence of oscillations. So far, we have
not found a satisfactory theory or explanation for these oscillations, leaving this phenomenon
unresolved.

Possible explanations might involve the unique characteristics of the BM exotic phase in
our device and, or, the electronic-granular nature of our InO superconducting material. The
exact origin of the oscillations within the gap remains unclear, and further experimental and
theoretical research is needed to resolve this mystery.

This unknown oscillatory behavior within the DOS gap is part of a broader set of unresolved
questions: Why is there a difference in the periodicity between oscillations inside and outside
the DOS gap? And why does the periodicity appear smaller outside the DOS gap compared to
inside it? These questions, too, remain unanswered.

While the significance of these observations is still unclear, the next subsection (4.2.5) presents
a theoretical model that may shed light on some of the oscillations observed experimentally,
particularly in the 2D system.

To conclude, we observed distinct oscillation patterns in the dI
dV

measurements of 1D and
2D dot arrays. The 1D dot-row exhibited faster oscillations both inside and outside the DOS
gap, whereas the 2D dot-matrix showed slower oscillations, primarily outside the DOS gap. We
attribute these disparities to the averaging of AR processes, as the 2D sample allows multiple
trajectories for the oscillations to accumulate. Unlike the single-series dot trajectory in the 1D
sample, it is less clear how the oscillations are formed and how the barrier affects them in the
2D configuration.

We utilized the strength of the SVD technique, to assist in analyzing complex physics exper-
imental data, by successfully reducing the dimensionality while preserving crucial information.
We found that the SV amplitudes and the different modes unveil valuable insights of real physics
properties, by effectively separate and highlight distinct physical mechanisms that construct the
results, which were otherwise difficult to isolate;

• The 1st mode of the SV D provides insight into the overall common behavior, representing
the AA background of the data.

• The 2nd mode effectively extracts information about the superconductivity gap width and

the extremum type of the
dI

dV
curve, suggesting a difference occurring at the DP regime.

• The higher modes (usually third to sixth) capture the oscillation pattern of the data, which
differs for energies inside and outside the SC gap.

The 1D device, where only one trajectory is available, provided insight into the physical
implications of SVD analysis and the physics underlying the fundamental building blocks of
Bosonic phases. We were able to extract ∆InO by analyzing the region between the crossover
points of the SVD 2nd mode curves and dividing it by the number of junctions. This allowed us to
conclude that the region between these points represents the DOS gap of the system. Moreover,
due to the singular trajectory passing through a number of junctions in series, pronounced
oscillations with varying periodicities were observed, both within and outside the DOS gap, on
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at scales of 2.5mV and 2mV respectively. This fits the scale for electronic interference effects
due to the dot periodicity of ≈ 3µm.

In contrast, the 2D device offers multiple trajectory options for current flow, making it
challenging to pinpoint the exact SC gap from the SVD analysis since the precise path of the
current is unknown. Additionally and most importantly, the multiple trajectories likely average
out the oscillations, resulting in fewer oscillations per Vg and a larger voltage periodicity.

Furthermore, dI/dV measurements of the 1D device showed only dips, whereas the 2D device
exhibited both dips and peaks. A peak indicates a strong coupling between grains, while a dip
suggests a weaker coupling. This discrepancy can be attributed to the difference in the barrier
strength and its ’weight’ in the 1D device, where a single trajectory is accessible, compared to
the 2D device with multiple trajectories. Both devices displayed a variety of dI/dV shapes,
including intermediate forms between peaks and dips, whose origins are not fully understood
yet.

The differences in dI/dV measurements between the 1D and 2D devices seem to arise from
variations in the number of current flow trajectories, highlighting the importance of junction
structure and path as critical factors influencing the experimental outcomes, particularly in
relation to our understanding of the BM phase and its microscopic mechanisms. While we do
not yet have a satisfactory explanation for the oscillation patterns, primarily observed in the
1D sample, it can be speculated that these patterns may be linked to fundamental mechanisms
within the BM phase.

Oscillatory behavior was observed in both the R(Vg) and
dI

dV
measurements. We demon-

strated that the periodicity of the R(Vg) oscillations corresponds to an intrinsic length scale of
a few tens of nanometers, which we propose is related to the emergent granularity of the InO and
the Josephson coupling between its electronic grains. On the other hand, the periodicity of the
dI

dV
oscillations suggests the presence of various AR processes between the dots. This periodicity

corresponds to a larger length scale of approximately 3µm, which is not fully understood but is
on the same order as the dot size of 1µm.

These two different length scales, originating from different regions within the superconduct-
ing system, have been shown to play significant roles in determining the system’s superconducting
properties [75].
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4.2.5 Preliminary theoretical work

The SNS model of a Josephson junction was explored in the work of Beenakker et al. [76],
particularly in cases where graphene serves as the normal region [77]. However, this model was
solved for short junctions, where one of the key assumptions is that the length of the normal
region (LN) is significantly smaller than both W and ξ, where W represents the width of the
SC region and ξ denotes the SC coherence length. In this model, the system is predominantly a
strong superconductor, with a measurable supercurrent unit. However, this is not our case. In
our scenario, we have a metallic device, with LN = 200nm (the interdot distance), W = 1µm

(the dot diameter), and ξInO ≈ 5 − 30nm. Thus, our system does not fall within the short
junction regime, nor is it fully SC with a critical current, necessitating a different model.

Theoretical efforts to model the behavior of our system have been initiated in collaboration
with Prof. Shimshoni’s theoretical group, where Khanna leads the effort. Calculations were
performed using the SNS Josephson junction model, focusing on the long junction limit where
LN > ξ. However, no oscillations were observed using this model, as it does not accurately
capture the nature of our system, which is characterized by predominantly normal (N) regions
rather than SC ones. Therefore, a model of NSN "unit cell" chain was considered, with ∆ =

0.7meV (that of InO), and VF = 106m/s (the velocity in graphene). In this case, they found that
ℏVF

∆
≈ 1µm, which fit our system, with LS = 1µm, our SC InO dot diameter (with LN = 200nm,

the inter dot distance), where LS is the SC region length (similarly to the notation of LN).
Therefore, LS was considered to be O(1) in the units of ℏVF

∆
. For numerical considerations

LS∆ was set to 3. EF in the induced SC regions in the graphene is noted as E ′
F and equals

to E ′
F = EF + U , where U is the energy shift, arising from the difference in the electrostatic

potential induced by the superconducting InO [39, 40]. This U was found to be much larger
than ∆ [39], leading to its arbitrary selection as U = −50∆ in the calculations.

The preliminary results shown in Fig. 4.26 present the normalized differential conductance
for different EF values versus the bias energy (ϵ) applied to the system (Vdc in the experiment).
These results were provided through personal communication with Khanna, who conducted the
full theoretical calculations, which are available upon request. In the first panel (Fig. 4.26(a)),
the model’s results are displayed for a wide range of EF (Vgs). The curves exhibit broad minima
around similar bias values for all EF values. The position of this minima was found to be√

1 + ( π
LS∆

)2 (indicated by dashed lines in the figures), considering normal incident conditions.
This model successfully produces oscillations with a periodicity that depends on π

LS∆
). Notably,

different choices of LS∆ (other than 3, as noted) would result in different locations of the minima
and varying oscillation periodicities. However, it is observed that these oscillations are occur in
energy regimes outside the DOS gap (when 1 < ϵ

∆
) for all EF values, which may correspond to

our experimental results in the 2D device, where oscillations in the SVD analysis were primarily
observed outside the DOS gap and at a similar order of ∆. Nonetheless, this does not fully align
with the raw data, which showed oscillations within the DOS gap in both 1D and 2D devices,
occurring at different bias voltage ranges depending on Vg.

Figs. 4.26(b) and (c) depict the same results for a narrower range of EF values, centered
around the DP and the SDP, respectively. Around the DP, oscillations within the DOS gap
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may begin to appear for certain EF values. As for around the SDP, the oscillations only appear
outside the DOS gap; however, the curves are not as smooth as those in Fig. 4.26(a), exhibiting
what seems to be a faster periodicity superimposed on the overall pattern.
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Figure 4.26: Normalized differential conductance vs bias for a NSN setup for different Fermi
levels in the normal region. (a) shows the conductance over a broad range of EF , (b) focuses
on values close to the DP, and (c) on those near the SDP. The dashed curve marks the bias at
which a minimum of the conductance is expected in case of normal incidence. Data taken from
the full theoretical calculations by Khanna, available upon request from the author.

This model successfully reproduced oscillations outside the DOS gap, which is a promising
start in modulating our experimental system, where oscillations appear at different Vdc values-
both outside and inside the DOS gap. However, this is only the beginning. Ongoing simulations
are underway to incorporate additional parameters such as higher Vdc, the system’s finite size,
and different incident angles, to more precisely modulate the experimental system. Further
research, both experimental and theoretical, is essential to fully comprehend these oscillations
in dI/dV , their driving mechanisms, and the insights they provide into Bose phases.
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Chapter 5
Summary and outlook

This dissertation investigates the bosonic phases that emerge in disordered granular supercon-
ductors undergoing the superconductor-to-insulator transition (SIT) using two novel approaches.
The primary aim is to contribute to the understanding of these bosonic phases during the tran-
sition. The key contributions and conclusions of this research are as follows:

The thermodynamic study of the specific heat of granular ultra-thin In films undergoing
the SIT yielded novel findings, particularly regarding the possibility of a Bose metal (BM) phase.
Intermediate thickness films exhibited a BM behavior, with R(T ) curves saturating at low tem-
peratures. These films displayed a distinct Cp behavior with two notable features, leading to
excess entropy. The main striking finding was the revelation of a sharp jump in Cp observed
at intermediate thicknesses, occurring between the insulating and superconducting phases dur-
ing the transition. This feature suggests complex thermodynamic behavior, including strong
quantum fluctuations and additional thermodynamic states or degrees of freedom, potentially
indicating a second phase transition within the material.

Additionally, a Bose insulator phase was identified in the system, evidenced by a peak in Cp

in thin insulating films, confirming the persistence of superconductivity in an insulating state.
Furthermore, change in β and the slope of Cp were observed, indicating variations in the

dominant heat carriers across different film thicknesses. This suggests significant changes in
the underlying physics governing heat transport near the SIT, possibly due to alterations in
electronic and phononic contributions.

Specific heat measurements have not previously identified this second feature in systems un-
dergoing the SIT. We believe that this finding, along with our other results, would be essential
for advancing the understanding of the SIT and other quantum phase transitions (QPTs). The
nature of this feature remains unknown, as it deviates from current theories and established Cp

behaviors. Further theoretical and experimental investigations are necessary to fully elucidate
these phenomena. For instance, specific heat measurements on other high θD thin-layer super-
conductors undergoing the SIT could provide valuable insights.

In the second approach, we investigated the transport properties of engineered SC InO

dot matrices on SLG, analyzing both 1D single dot rows and 2D dot matrices. Fluctuations
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were observed in the R(Vg) measurements, while oscillatory behavior appeared in the dI
dV

mea-
surements. The fluctuations in R(Vg) corresponded to an internal length scale of a few tens
of nanometers, associated with the emergent granularity of InO and the ξpair length. The dI

dV

oscillations matched a larger length scale of few µm.
Differences in dI/dV measurements between the 1D and 2D dot arrays were observed. The

1D dot row exhibited faster oscillations compared to the slower oscillations in the 2D matrix,
attributed to the averaging of AR processes in the 2D configuration, which allows multiple
current paths, unlike the single path in the 1D case.

Using SVD, we gained valuable insights into physical properties by separating and high-
lighting distinct physical mechanisms. For the 1D device, SVD revealed a DOS gap, ∆InO, by
examining the region between crossover points of the SVD 2nd mode curves. Oscillations with
periods of 2.5mV and 2mV were correlated with a length scale of approximately 3µm, which
is associated with AR between two dots. In the 2D device, multiple trajectories and averaging
effects made it difficult to determine the SC gap precisely, leading to fewer and broader oscilla-
tions in dI/dV . The 1D device showed only dips in dI/dV , while the 2D device exhibited both
dips and peaks, likely due to the differing number of current paths and barrier strengths.

Attributing these disparities in dI/dV measurements to variations in the number of current
trajectories underscores the importance of path and junction construction in influencing experi-
mental outcomes, particularly in understanding the BM phase and its microscopic mechanisms.
While the exact nature of the oscillation patterns remains unclear, we believe they may relate
to fundamental mechanisms in the Bose phases.

Further experiments on various SC materials, dot sizes, and varied inter-dot distances hold
the potential to deepen our understanding of the mechanisms controlling the Bose phases and the
observed oscillations. Performing these measurements on additional 1D and 2D matrices with
varied dot sizes and inter-dot distances can help determine if the oscillation pattern changes
as hypothesized. Repeating these experiments with different SC materials, especially in the
1D configuration, will ascertain if the observed oscillatory behavior is specific to low n SC
coupled to SLG or occurs in other materials as well. Another research direction could involve
achieving the BM phase in N-S dot matrix configurations and controlling their coupling through
different methodologies, such as evaporating thin layers using quench condensation technique.
This approach could broaden our understanding of the underlying physics and the nature of
these oscillations, determining whether they are specific to the unique characteristics of SLG,
low n SC, or other factors.

Overall, the findings from our investigations revealed intriguing thermodynamic signatures
and insights into the electrical characteristics of the building blocks of bosonic phases. Together,
both the thermodynamic and the transport measurements, highlighted the complex behaviors
and phenomena of the Bosonic phases, contributing to a deeper understanding of the electrical
dynamics and mechanisms within disordered granular superconductor systems. This combined
perspective shed light on bosonic phases from different angles, providing a broader view that
advanced our understanding of the fundamental questions surrounding these phases and paved
the way for future inquiries and advancements in quantum condensed matter physics.
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Appendix A
Specific heat measurements of ultra-thin layers of
silver

In an effort to isolate the contribution of superconductivity and gain further insights, we chose to
investigate a normal metal, silver (Ag), undergoing an insulator-to-metal transition (MIT). This
complementary study provided additional context and comparative baseline data to enhance our
understanding of the thermodynamic behavior of granular disordered systems. Silver was chosen
due to its high θD value of θAg

D = 227.3K, significantly higher than that of previously studied
Pb(88K) and than that of In(129K). This ensures a minimized phononic contribution, thereby
enabling the observation of electronic behavior within the system.

11 steps of quench-condensed Ag films were studied, using the same techniques and mea-
surement protocol as those employed in the In experiment (following the protocol outlined in
Chapter3.1.3).

To explore potential variations in heat transfer across different morphologies within the same
system, the first layer underwent two measurements: initially in its amorphous phase, attained
by depositing it on an antimony adhesion layer and maintaining the system under 20K. Subse-
quently, it was measured as a crystalline layer, acquired by heating the system to room temper-
ature (and then re-cool it).

By utilizing equation 1.1, we can gain insight into the predominant heat carriers of Cp through
analysis of the slope exhibited in the log(Cp) versus log(T ) curve. A slope of 1 would suggest
dominance by electrons, while a slope of 3 would indicate dominance by phonons. This analysis
of the first layer is depicted in Fig. A.1. Noticeably, the slope changed from 3 in the amorphous
phase to approximately 1 in the crystalline phase. This observation suggests that phonons
govern heat transfer in disordered, i.e. amorphous, state of a system while electrons emerge as
the dominant carriers in the ordered, i.e. crystalline, state of a system. This outcome is rather
unexpected, as electron dominance at low temperatures is theoretically predicted regardless of the
system’s morphology. The emergence of this finding within a material with a high θD underscores
the importance of selecting such materials when studying the amorphous state to enable the
detection of electronic heat carriers’ behaviors in disordered systems. If phonons govern heat
transfer in the amorphous state of high θD materials, it would be even more challenging to
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observe electronic effects in low θD materials. Therefore, choosing high θD materials is crucial
for studying electronic behaviors, as it provides the best chance of detecting them.

An additional surprising finding is the observed change in the absolute value of the Cp signal
between the two morphologies. After crystallization, the absolute value of Cp is higher, indicating
that the crystalline morphology can retain more heat than the amorphous one. This phenomenon
requires further explanation, as one might logically expect a system dominated by phonons, which
possess three degrees of freedom, to exhibit a larger Cp value compared to one dominated by
electrons, which have only one degree of freedom.

Figure A.1: Log(Cp) vs Log(T ) of the 1st nano-thick-Ag layer before (blue) and after (black)
crystallization. Solid lines represent the matching slopes. The slope changed from 3 to ≈ 1,
indicating the shift in the ruling heat carriers.

This measurement revealed a shift in the dominance heat carriers as the morphology of the
system changed, emphasizing the important role of phonons in heat transport within disordered
systems. This underscores the importance of investigating disordered materials with low Debye
temperatures to observe electronic behaviors in such systems.

Sequential evaporations were performed onto the crystalline 1st layer (growing as crystallized
layers), while the system temperature maintained under 25K. Both R(T ) and Cp measurements
were taken for each step. The system exhibited an Insulator-to-Metal transition (MIT) as a
function of thickness. As the layer thickness increased, the resistance decreased. Eventually,
the sample transformed from being a strong insulator with R ≈ 108Ω to a normal metal with a
resistance of a few tens of ohms at the final step. This transition is illustrated in Fig. A.2(a),
where logR vs 1/T 0.5 curves for the various steps are plotted. This representation highlights the
Mott behavior of the system. The corresponding Cp measurements are presented in Fig. A.2(b),
using the same color code.

In a similar manner to the In experiment, we analyzed the reduced Cp to elucidate the

prevalence of heat carriers. The
Cp

T
vs T 2 curves are depicted in Fig. A.3.

Chosen steps are depicted in Fig. A.3(b), where their raw data is presented with linear
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(a) (b)

Figure A.2: Measurements of 11 sequential depositions of Ag thin layers (a) logR vs 1/T 0.5 plot
illustrates the phase transition of the system. Initially, the system exhibits strong insulating
behavior (black to yellow curves). Subsequently, it transitions to a normal metal with saturated
resistance, beginning from the 4th deposition step. (b) Cp vs T measurements for the same Ag

layers, using the same color code.

(a) (b)

Figure A.3: The reduced Cp,
Cp

T
vs T 2 of (a) the 11 Ag layers (b) chosen steps (log scale). In

the final, thickest, films, higher slope is emerging from a certain T . The red dashed line is a
linear fit for each curves.

fits (dashed red lines). The curves exhibit a nearly flat trend, with slopes hovering around 1,
suggesting electronic heat transport dominance. Thinner films (layers 1-8) maintain this flat
profile across the entire temperature range. However, as the layers thicken (layers 9-11), a
discernible increase in slope is observed beyond a specific temperature threshold.

This rise in slope may be marking a transition from the electronic dominance observed in
crystalline phases back to the phononic-dominated behavior seen for amorphous structures, sig-
nify a return of the system to an amorphous state as the layer become thicker. Interestingly, the
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temperature at which the slope deviates from 1 decreases as the film thickness increases. While
only three distinct slopes demonstrating this recovery were measured, further investigations on
thicker layers may reveal a complete return to the initial slope of 3, resembling that observed
in the amorphous phase of the film (see Fig. A.1). This slope behavior, initially indicating
electronic dominance in Cp, appears to evolve as the layer thickens, possibly reflecting changes
in the system’s morphology.

The successful measurement of electronic behavior re-insure the decision to use silver with its
high θD. Additionally, no second jump, excess entropy or reductions in β value were measured.
As silver is a conventional metal this indicates that these unique behaviors are indeed linked to
the QPT and the quantum fluctuations occurring in the vicinity of the transition.

The thickness and mass of each layer were calculated and are presented in Table.A.1.

Layer number Mass (gr) Thickness (nm)
1 5.983E-8 1.11256
2 1.55921E-7 2.8994
3 2.65609E-7 4.9391
4 3.90708E-7 7.26537
5 5.43909E-7 10.1142
6 7.82323E-7 14.54759
7 1.29269E-6 24.03808
8 2.25632E-6 41.95707
9 4.57972E-6 85.16156
10 9.16941E-6 170.50855
11 1.82391E-5 339.16284

Table A.1: Table of the mass and thickness at the varied steps.
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Hysteresis

As we scanned the R(Vg) of SC dots/SLG devices, the measurement revealed the existence of
hysteresis in R(Vg) when Vg was swept in the "up" versus "down" directions. As depicted in
Fig. B.1, the hysteresis was affected by both temperature and magnetic fields. The hysteretic
behavior is suppressed with increasing temperature (Fig.B.1(b,c)) and enhanced with increasing
magnetic fields (Fig.B.1(d)).

The closure of the hysteresis at higher temperatures implies a relation to the existence of
SC in the graphene. As superconductivity is destroyed, the hysteresis closes. However, the
hysteresis widens (longer distance between the DP peaks) with higher magnetic fields, which
requires further explanation.

It is worth noting that the observed hysteresis is more prominent in 2D devices based on
CVD-grown SLG compared to devices based on exfoliated graphene. This difference may be
attributed to the polycrystalline nature and higher impurity content of CVD-grown graphene.
However, a full understanding of the appearance of hysteresis has not yet been achieved.
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(a) (b)

(c) (d)

Figure B.1: Hysteresis in R(Vg) of two InO dot array devices observed at different temperatures
and under varying magnetic fields. (a) Set of Rsqr(Vg) as swept in the "up" direction (solid line)
and in the "down" direction (dashed line) at B = 0T and T = 3K (b) Several hysteresis sets of
the same device at different temperatures (c) R(Vg) of the second device as swept "up" (thicker
line) and "down" (thinner line) at B = 0T , at T = 0.33K (black) and T = 20K (pink) (d) R(Vg)

sets of the same device under different magnetic fields. At higher temperatures, the hysteresis
is closed, whereas under magnetic field it widens.
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Higher temperatures and Magnetic field effects
on R(Vg) measurements

C.0.1 Effects on the SDP

The effects of temperature and magnetic field on the SDP are noteworthy. The SDP observed
in the R(Vg) sustains with temperature, as shown in Fig. B.1(b). It is observed even at tem-
peratures much higher than TC , such as 30K, which is well above T InO

c = 3.5K. The existence
of SC at higher temperatures than Tc has been discussed previously [39] and is observed in our
findings as well.

Next, we discuss the effect of applied magnetic field on the SDP. While the SDP was explicitly
observed in some devices (usually in relatively ’big’ matrices with numerous number of junctions,
as in Fig. B.1(a)), in others, smaller matrices, we either couldn’t reach it (due to too high |Vg|)
or it appeared as a broad "knee" in the resistance measurement. In these cases, this "knee"
appeared to evolve into a peak or split into a pronounced peak under a magnetic field. This
behavior is evident in Fig. B.1(d) and in a few additional examples, where applying magnetic
field resulted in the transformation of this "knee" into a more pronounced and well-defined peak,
as shown in Fig. C.1.

Taking the device depicted in Fig. B.1(a,b) as an example to demonstrate the effect of the
magnetic field, in addition to the distinct "triangular shape" of the R(Vg) curve, at B = 0, there
is no appearance of a second DP in the R(Vg) curve. Instead, a distinct "knee" is observed around
Vg = −30V (Fig.B.1(a)). As the magnetic field increased, this knee evolved into a prominent peak
(Fig.B.1(b)). Furthermore, as discussed in the main body of the thesis (Sec.4.2.1), resistance
fluctuations are observed and seem to be most prominent near the DP. In cases where the R(Vg)

curve appears smooth, fluctuations are only seen in the DP regime. These fluctuations become
more pronounced as the magnetic field increases.

Certainly, this development/"splitting" of the knee under magnetic field can be related to
the quantum Hall effect (QHE) in graphene.
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(a) (b)

(c) (d)

Figure C.1: Different devices exhibiting a "knee" at R(Vg) under B = 0T that evolves under
applied magnetic field.

C.0.2 QHE and filling factors

The QHE in graphene is characterized by the observation of discrete steps in conductivity when
a magnetic field is applied. These steps correspond to changes in the number of occupied Landau
levels, which are filled according to the filling factor (ν). ν represents the ratio of the number of
electrons to the number of magnetic flux quanta passing through the graphene sheet. The QHE
has been clearly observed mainly in devices made of exfoliated flakes. By varying the electron
density, Vg, the number of occupied Landau levels changes, leading to alterations in conductivity.

In Fig. C.2, R(Vg) curves showing a knee at B = 0T and its evolution under different
magnetic fields, of two distinct exfoliated-flake devices, are presented. The dot matrices in both
presented devices were fabricated at an O2 pressure of 8 × 10−6, resulting in SC dots. In these
devices, the QHE was nicely measured, manifesting in fine features in the R(Vg).

These changes in conductivity are directly related to the filling factors. The relation between
resistance and filling factor, of the same device presented in Fig. C.2(b), is shown in Fig. C.3.

The observation of the QHE can attest to the cleanliness and quality of the device.
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(a) (b)

(c) (d)

Figure C.2: R(Vg) of a 2D dots matrix fabricated on top of exfoliated graphene, measured under
different magnetic fields. In both devices, at B = 0T (a,c), a single peak, the DP, was observed
with a knee to its left side. As B was applied, the QHE was observed. (b) Device measured
at B = 0T, 6T at base temperature of 0.33K and (d) measurements of a different device under
B = 0T, 9T at 1.66K

Figure C.3: R(ν), at B = 9T of a 2D dots matrix exfoliated-graphene based device. The steps
in resistance match the filling factor integers 0,−4,−8,−12,−16..

87



Appendix D
Extended SVD analysis

In this chapter, we provide further SVD analysis of 1D and 2D SLG/SC dot devices, further
confirming the consistency of the results. This includes a 1D device of Tin (Sn) dots, which
was not previously discussed in the main body of the thesis. These additional results reinforce
key findings and demonstrate the robustness of the SVD approach. While the main body of the
thesis focuses on data at zero magnetic field, this appendix includes measurements and SVD
analysis under a 6T magnetic field.

Figure D.1 shows dI/dV measurements at base temperature and at B = 0 for two additional
1D samples: (a) a Tin (Sn) device and (b) an InO device. Both show fast oscillations in dI/dV

as a function of Vg and Vdc. In contrast, (c) presents the dI/dV measurements of a 2D InO dot
matrix device, where slower, larger periodic oscillations are observed.

88



Appendix

(a) (b)

(c)

Figure D.1: dI/dV measurements of SLG/dots devices. (a-b) two 1D devices, consists of 17
dots row of (a) Sn and (b) InO. (c) 2D InO dots device. Clear oscillation pattern is seen at the
different devices, with faster oscillations at the 1D devices compare to the oscillations in the 2D
device.

SVD analysis was performed, and the findings are as follows:
The λ values for the 1D Sn device and 2D InO device are shown in Fig. D.2(a) and (b),

respectively. The power-law exponent k for the 1D Sn device is −1.2, closely matching the −1.3

found for the 1D InO device, as discussed in the main body of the thesis. The 2D device has a
power-law exponent of −4, consistent with the value obtained for the 2D device analyzed in the
main body of the thesis. This agreement suggests that the scaling behavior remains consistent
across different device geometries, regardless of material. The similar λ values suggest compara-
ble noise characteristics between different materials, influenced by geometry. Notably, the data
from the 1D system shows noisier (more oscillatory) behavior, aligning with the understanding
that as the number of trajectories increases, faster oscillations are averaged out, as discussed in
the main body of the thesis.

.
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(a) (b)

Figure D.2: λ values of 1D Sn device, exhibiting k = −1.2 power low behavior, and of 2D InO
device with k = −4 power-low behavior.

Next, we turn to examine the first two SVD modes, presented in Fig. D.3 for the 1D Sn

device, Fig. D.4 for the 1D InO device, and Fig. D.5 for the additional 2D InO device.
The first mode captures the logarithmic characteristics of the AA background. For the 1D

devices, this logarithmic AA background can be seen in Fig. D.3(a) and Fig. D.4(a). In the 2D
device (Fig. D.5(a)), fine features are observed. These results are consistent with those in the
main body of the thesis.

The second mode reveals a crossing between two points, from which ∆ can be inferred for
the 1D devices (known current trajectory). For the Sn device, we calculate ∆Sn by dividing
the regime between the two crossing points at Fig. D.3(b) by the 17 junctions. We find ∆Sn ≈
1.08mV , which is remarkably close to the real ∆Sn value measured, of ≈ 1meV [78]. Similarly,
∆InO ≈ 0.71mV is extracted from Fig. D.4(b), consistent with the known ∆InO value of our
InO samples. It can be easily observed with the naked eye that ∆Sn > ∆InO when comparing
the second mode SVD analysis figures of the two devices, which is an interesting point to note.

Additionally, the amplitudes of the second mode vary around the DP, as seen in Figs.D.3
and D.4 panels (c). A minimum, where the second mode is smaller than 1 (local minima in the
Sn case and absolute in the InO case), appears in a specific Vg regime, in the vicinity of the
DP. This change in the extremum "type" of the 2nd mode amplitude is evident and consistent
across our measurements, as demonstrated in the main body of the thesis. For the 2D device
presented here, the DP is at too high Vg for us to cross during measurement. Consequently, this
effect is less clear in this case, and the corresponding figure for the 2D device is not included.

Higher modes exhibit oscillatory behavior. Overall, this extended SVD analysis confirms
the findings from the main body of the thesis, showing consistent behavior across different
devices and materials. It underscores the power of SVD analysis in extracting important physical
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information that would otherwise be difficult to detect.

(a) (b) (c)

Figure D.3: SVD analysis of Sn 1D device.

(a) (b) (c)

(d) (e) (f)

Figure D.4: .
SVD analysis of InO 1D device data. Top Row (0T): (a) First SVD mode, (b) 2nd SVD mode,
(c) amplitude of the 2nd mode (black dotted line) with the device resistance (blue curve) vs.
Vg. This SVD analysis is consistent with the 1D device discussed in the main body of the thesis.
Bottom Row (6T): (d) Raw dI/dV data of the device at 6T , (e) 2nd SVD mode and (f) same
as (c), just under field.
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(a) (b)

Figure D.5: SVD analysis of InO 2D device. Its analysis shows similarity to the 2D device
discussed at the main body of the thesis.

Now, we turn to examine the SVD analysis of the results under magnetic field.
For the additional 1D InO device (raw data in Fig. D.1(b)), the results at 6T are shown in
Fig. D.4(d-f). In Fig. D.4(d), the raw dI/dV data is presented. The 6T data exhibits larger
fluctuation amplitudes compared to the 0T data (see raw data without magnetic field in Fig.
D.1(b)). However, qualitatively, it remains similar— showing a dip at all Vg values, with fast
fluctuations superimposed on an overall structure.

A difference, visible in the U vectors from the SVD analysis, is that under a 6T field, the
AA background broadens and its absolute value decreases. The U values for the first and second
modes at 0T (black curve) and 6T (red curve) are shown in Fig. D.6. Here, we observe the
broadening of the AA background (U1) and a slight broadening of U2, both with lower absolute
values compared to 0T. This broadening and reduction in the AA background under a magnetic
field is consistent across other devices as well.

The SVD analysis at 6T (Fig. D.4(c-f)) yields results that are qualitatively similar to those
at 0T; The 2nd mode at 0T and 6T (Figs. D.4(b,e)) shows overall similarities. However, the
second mode at 6T is more fluctuating, effectively capturing the nature of the raw data. When
extracting ∆ from the 2nd mode analysis at 6T, we find that it remains the same as at 0T. This
suggests that ∆ does not change between 0T and 6T.

Figures D.4(d,f) further illustrate the same behavior. We observes a broadening of the DP
regime in the R(Vg) measurements under 6T, and correspondingly, a broadening of the region
where a minimum occurs in the second mode amplitude analysis. Despite these changes, the
overall behavior remains consistent.
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(a) (b)

Figure D.6: SVD U1 (a) and U2 (b) vectors of the 1D InO device at 0T (black) and under 6T
(red). Showing a broadening under field and smaller absolute values.
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 תקציר

פאזה בו הן  ממערכות עוברות , בו ( SITלמבודד ) -על-מוליך הפאזה בין מעבר 

שאינם שונים בעקבות שינוי פרמטרים   לפאזה בו הן מבודדות,על -כותמולי
מעבר  בלב הוא תופעה קוונטית מרכזית בפיזיקה של חומר מעובה.  ,הטמפרטורה
קוונטיות, המעניקות הצצה לאזור קוונטי קריטי   אוסילציות זה נמצאות פאזה קוונטי  

על מלאה אך מנגד היא  -מחד היא לא במצב של מוליכות –שבו המערכת במצב ייחודי 
גם לא במצב בו היא מבודדת במלואה. למרות מחקרים מקיפים שנערכו, היבטים 

, נותרו נושא SITכגון הופעתן וטבען של פאזות בוזוניות אקזוטיות במהלך ה  יםיסודי
 . ר חדש האיר באו מבקש למחקר זה אותן לדיון ער שבתוכו מגוון שאלות פתוחות 

 
של המנגנונים העומדים בבסיס הפאזות   העמקת ההבנהמטרת מחקר זה היא 

באמצעות שתי שיטות   זאת,. על גרנולריים לא מסודרים-הבוזוניות במערכות מוליכי
וך שימוש בטכניקת מדידה רגישה במיוחד ת( מדידות תרמודינמיות, 1חדשניות: ) 

תוך  נעשית   זוה . מדיד(In)לחקר קיבול החום הסגולי של שכבות דקות של אינדיום  

, מתוך מטרה לחקור את ההיתכנות של פאזה  SITה אתעוברות   כדי שהשכבות
מעבדתו  חלק זה של המחקר נעשה בשיתוף פעולה עם   . ( BM)  מתכתית בוזונית

שבגרנובל, צרפת,   Neel, CNRS'ואה ממכון המחקר  זד"ר אוליבייה בורשל 

( מדידות תובלה, 2)  ובשימוש בחדרים הנקיים ובמכשירי המדידה במכון המחקר.
במטריצות  -( NSמתכת ) -על -צמתי מוליך -הבוחנות את יחידות הבסיס של פאזות אלו 

(. במחקר  SLG( על גבי גרפן ) InOאוקסיד אמורפי ) -מוליכות של אינדיום-נקודות על 
  ( D2)  והן מערכי מטריצות של נקודות ( D1ות ) זה נבחנו הן דגמי שורה בודדת של נקוד

על מנת לנתח את תכונותיהן החשמליות באמצעות מדידות התנגדות והולכה  
 דיפרנציאלית. כל פרק בעבודת המחקר מאורגן סביב שתי השיטות הללו. 

 
ממצאי המחקר כוללים חתימות תרמודינמיות חדשות בקיבול החום הסגולי של 

בעוביי הביניים, כאשר מדידות ההתנגדות כתלות בטמפרטורה הציגו  Inשכבות  
בשכבות ביניים   .התנגדות רוויה בטמפרטורות נמוכות המשתקפת ב, BMהתנהגות 

המדידה מוכרת:  קיבול החום הסגולי נצפתה סטייה מהתנהגות מדידותאלו, ב

עלייה משנית חדה, שנשארת יחסית שטוחה וקבועה בטמפרטורות גבוהות   הראתה
יותר, במקום לחזור לאות המצב הנורמלי. זוהי הפעם הראשונה שתכונה כזו נמדדה  

על. כתוצאה מעלייה חדה זו נגזרו אנומליות  -בקיבול חום סגולי של שכבות מוליכות
סף, הסטייה התבטאה בשינוי בנושאי החום באנטרופיה בשלבי ביניים אלו. בנו

 הדומיננטיים, המצביע על מאפיין ייחודי השייך לשכבות הביניים הללו. 
 
, עם דפוסי  NSעל התנהגות צמתי  אינפורמציה חדשהדידות התובלה סיפקו מ

והן  ,ייחודיים שנמדדו הן במדידות ההתנגדות כתלות במיתוח הגרפן  אוסילציות
אלו  אוסילציות  במדידות ההולכה כאשר המתח הישיר שונה, במיתוחי גרפן שונים. 



 ב
 

העל, כאשר -בהולכה הופיעו בתוך ומחוץ לאנרגיית הפער האסור )דלתא( של מוליך
. עיקר מאמצי הניתוח שלנו התמקדו  1Dביותר נצפו בדגמי ה המהירות  האוסילציות

לניתוח   SVDבטכניקת  ,לראשונה ,הולכה אלו, תוך שימוש אוסילציותבדפוסי 
ייתכן  ו ,עדיין לא מובן במלואואוסילציות אלו של   טבען נתונים ניסיוניים מורכבים.

 . נמדדו הב BMפאזת ההן תוצאה של ש
 

באור  ותירלמרות שעדיין אין הסבר מלא לתופעות, תצפיות ניסוי חדשות אלו מא 
ואת המורכבויות של הפאזות   SITחדש את הדינמיקה המורכבת שמניעה את ה

הבוזוניות. תוצאות המחקר שלנו סוללות את הדרך לשאלות מחקר עתידיות 
ולהתקדמות בפיזיקה של חומר מעובה, ומקרבות אותנו להבנה מקיפה יותר של 

 הפאזות הקוונטיות המרתקות הללו. 
 



 תוכן עניינים  

 i תקציר באנגלית 

 1 רקע מדעי  1

 1 (SITמבודד )  ל ע-ךמעבר מולי  1.1 

 SIT 2המודל הבוזוני של ה 1.2 

 SIT 4בפאזות בוזוניות  1.3 

 4 מבודד בוזוני   1.3.1       

 6 מצב מתכתי אנומלי   1.3.2       

 SIT 9ות קיבול חום במהלך המדיד  1.4 

 1.5 SIT  13 מתח המונע על ידי שינויי 

 16 קליין בגרפן ומינהור   שיקוף אנדרב תופעות  1.6 

 18 מטרות מחקר  2

 21 שיטות ניסיוניות 3

 21 קיבול חום מדידות    3.1 

 21 הכנת תא קלורימטרי  3.1.1        

 25 שיטת עיבוי בטמפרטורה נמוכה 3.1.2        

 26 פרוטוקול מדידה   3.1.3                   

 28 על על גבי גרפן -של דגמי נקודות מוליכות מדידות תובלה   3.2 

 28 הכנת הדגמים  3.2.1         

 31 אינדיום אוקסיד אמורפי  3.2.2         

   32 התקנה ופרוטוקול מדידה  3.2.3        

 34 תוצאות ודיון  4

 34 שכבות דקות של אינדיום של סגולי מדידות קיבול חום   4.1 

 45 על על גבי גרפן -נקודות מוליכותבדגמי  SNSמדידות תובלה של צמתי   4.2 

 46 הגרפן  מדידות התנגדות כתלות במיתוח  4.2.1     

 53 כתלות במתח ישיר וליכות  דידות ממ  4.2.2     

 SVD 57שיטת ה 4.2.3     



 SVD 59בעזרת שיטת הנתונים הניתוח  4.2.4                

 69 עבודה תאורטית ראשונית  4.2.5                 

 71 וכיווני מחקר עתידייםסיכום  5

 73 ביבליוגרפיה

A  79 מדידות קיבול חום סגולי של שכבות כסף דקות 

B  83 היסטרזיס 

C 85 ושדות מגנטיים גבוהים ה גבוההפקטים בטמפרטורא 

 1.C השפעות על הSDP 85 

 C.2  86 פקטורי מילויאפקט הול הקוונטי ו 

D  ניתוחים נוספים באמצעותSVD 88 

א  תקציר בעברית 



מהמחלקה לפיזיקה, עבודת מחקר זו נעשתה בהנחייתו של פרופ’ אביעד פרידמן 

 אילן. - אוניברסיטת בר

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



פאזות בוזוניות במעבר על מוליך מבודד 

 במערכות גרנולריות 

 

 

 תואר "דוקטור לפילוסופיה" החיבור לשם קבלת 

 

 : מאת

 שטיין   פראדיל  יהודית 

 

 

 

 המחלקה לפיזיקה 

 

 

 הוגש לסנט של אוניברסיטת בר אילן 

 

 

 

 תשרי, התשפ”ד  רמת גן


	Abstract
	Introduction
	Superconductor to Insulator Transition (SIT)
	The bosonic model of the SIT
	Bosonic phases in the SIT
	Bose insulator
	Anomalous metallic state

	Heat capacity measurements through the SIT
	Gate induced SIT
	Andreev reflection and Klein tunneling in graphene

	Motivation
	Experimental Methods
	Heat Capacity Measurements
	Calorimetric Cell Preparations
	Quench Condensation
	Measurement Protocol

	Transport Measurements of SLG/SC-Dots Bilayer Devices
	Sample Fabrication
	InO
	Set up and Measurement Protocol


	Results and Discussion
	Specific heat measurements of Ultra-thin layers of indium
	Transport measurements of SNS junction- SLG/SC-dots bilayer devices
	Resistance versus Vg measurements
	Conductance versus Vdc
	The SVD method
	SVD analysis of the data
	Preliminary theoretical work


	Summary and outlook
	Bibliography
	Specific heat measurements of ultra-thin layers of silver
	Hysteresis
	Higher temperatures and Magnetic field effects on R(Vg) measurements
	Effects on the SDP
	QHE and filling factors


	Extended SVD analysis

