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Abstract

In nature, networks rarely appear in isolation. They are typically elements in larger systems
and can have non-trivial effects on one another. In the light of this situation the model of
interdependent networks (i.e. systems where the functionality of a node in one layer depends
on the functionality of other nodes in the remaining ones) was developed. In particular, after a
seminal article [1], increasing evidence has been collected showing that interdependent
networks exhibit unique phenomena resulting in abrupt transitions. A striking example is the
famous 2003 Italy blackout.

Although the model of interdependent network has been studied more than a decade, it has
never been applied on real-world physical system. Our study, is the first attempt to do this. For
this purpose, we coupled two disordered superconducting networks via a medium that is an
electrical insulator but a heat conductor. Because of the disorder, each node in a network has
its own critical temperature and critical current (T,, I..), thus, we can control the functionality
of nodes in the networks. The coupling between the networks is created by passing the same
current within both networks simultaneously, thus generating links based on heat-transfer
between the networks.

We preformed Resistance vs Temperature measurements of both networks simultaneously
and each network separately for different currents. Our main result is that the RT curves of
both coupled networks for a certain current exhibit an abrupt transition and hysteretic behaviour
with a shared T,, while the RT curve of each uncoupled network for the same current exhibit a
continuous transition with a different T, in each network. The shared T, is determined by T, of
the network with the lower transition temperature.

We collaborated with Prof. Shlomo Havlin’s group and developed a theory based on
random network of Josephson Junctions that can explained our results.

We trust that our experimental results, together with the simulation results of Havlin
Group’s will pave the way to engineer interdependent physical processes, whose achievement

may lead to new technological applications such as ultra-sensitive sensors.



1 Theoretical Background

1.1 Network percolation theory

There are only a few available theoretical techniques for dealing with flow in disordered,
random and complex systems. One of the nicest and simplest of these techniques is the
percolation theory. A manifestation of this theory deals with a model of a random graph, in
which the bonds between each two neighboring nodes may be open with probability p or closed
with probability 1 — p. Adjacent opened bonds are considered as clusters, and each bond state
is independent of the state of its adjacent bonds. The main research question of this model is
what critical fraction of bonds must be open in order to connect the edges of the graph, this
critical fraction is called the percolation threshold and marked as p,.

A simple physical example for the percolation model can be the electrical-network. This
model describes a network represented by a large 2D square-lattice of unit conductors that is
attacked by a crazed man who, armed with a wire-cutter, proceeds to cut the unit conductors at
random as illustrated in Fig. 1. His aim is to break the connectivity in the network. In this case
the main question is: what critical fraction of bonds (unit conductors) must remain un-cut in
order for the electrical network to still be connected. This question, of which can be given a
definite answer by percolation theory, illustrates the most significant issue of the percolation
model: the existence of percolation-transition at which the long-range connectivity of the
system disappears or, for reasons of symmetry, appears. This basic transition, which occurs

abruptly, constitutes p..
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Figure 1: Top - electrical circuit that contains resistors network as one of its components.
Bottom - The current within the network as a function of uncut bonds (p). When p is larger than p,, current is
still flowing and there is connectivity in the system. When p is less than p, current vanishes since there is no

connected path of unit conductors that traverses the network from one side to other [2].

One of the main parameters of percolation theory is the percolation probability (P(p) or P,).
It describes the probability to randomly choose a bond from the entire system that is connected

to a cluster that traverses the network. Fig. 2 illustrates the behavior of P(p) in a 2D

percolation.
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Figure 2: P(p) as a function of connected bonds, p [3].



P(p) shows the qualitative change at p. as long-range connectivity transfers from zero where
the network is disconnected to a finite value where a cluster that traverses the network first
appears. It was found out that close to the threshold, the behavior of P(p) is universal
(independent on the network and type of interactions) and can be described by critical exponent
(P(p) x (p —p.)P). The qualitative shape and the universality of P(p) indicates that the
system undergoes a second order phase transition, P(p) being the order parameter which drops
to zero rapidly but continuously as p,. is approached.

Another property of network percolation theory which is important for our research is the
existence of the Giant Connected Component (GCC), which contains all the nodes that are

connected to the cluster that traverses the network.

1.2 Interdependent networks

Single network percolation theory has been extensively developed and studied for a wide range
of fields over the past few decades [4-10]. It was realized recently that many real-world
systems include macroscopic subsystems which influence one another. Taking into account the
mesoscopic organization of these interwoven structures has led to the understanding that
interactions among systems can significantly modify the collective behaviors of processes
acting on them, leading to a phenomenology that is unexpected if one considers the same
systems in isolation [11-13]. One of the most interesting models describing an interacting
complex system is the interdependent network model developed by our collaborator Prof.
Shlomo Havlin [14]. This model describes a system of connected networks that exhibits
cascading failures and explosive collective phenomena resulting in abrupt phase transitions.
Remarkably, though being discontinuous and irreversible, these novel transitions display also
critical scaling and are hence susceptible to universal features, whose study is in its infancy
[15-17].

The distinctive feature of the interdependent networks model is the existence of two types
of links which represent two qualitatively different kinds of interactions. Within networks,
links between nodes describe connectivity in the sense that physical process (e.g., electric
current) can spread through the network, moving from one node to another. Between networks,
on the other hand, links describe dependency relationships which cause dependent nodes to
crucially influence each other, without letting the physical processes within each network hop
to the other. The outcome of distinguishing between dependency and connectivity links

becomes transparent when considering a percolation process to describe the system stability



against the failure of some of its components. In contrast with isolated systems, where the
existence of at least one path that connects any randomly chosen node in the network to the
GCC can be adopted as a proxy for functionality, in the presence of interdependencies the
functionality of nodes is stricter. Even if a node is connected to the GCC, it will cease to
function if the nodes upon which it depends on will cease to function. Therefore, while the
connectivity links physically spread the damage within the networks, the dependency links
spread instantaneously the information about local malfunctions across the networks.

The interplay between these two types of links amplifies the propagation of failures which,
in its turn, can ignite percolation cascades and lead to an abrupt collapse of the system. A
generalization of percolation theory to interdependent networks was developed in Ref. [14] and

was able to explain the famous 2003 Italy blackout (see Fig. 3).
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Figure 3: lllustration of an iterative process of the propagation of the famous 2003 Italy blackout using real-
world data from a power network (located on the map of Italy) and an internet network (shift above the map). a -
One power station is removed (red node on map) from the power network and as a result the Internet nodes
depending on it are removed from the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network) at the next step are marked in green.
b - Additional nodes that were disconnected from the Internet communication network giant component are
removed (red nodes above map). As a result, the power stations depending on them are removed from the power
network (red nodes on map). Again, the nodes that will be disconnected from the giant cluster at the next step are
marked in green. c - Additional nodes that were disconnected from the giant component of the power network are
removed (red nodes on map) as well as the nodes in the Internet network that depend on them (red nodes above

map).

It was found that, the mutual GCC (the MGCC, i.e., the set of nodes defined to be functional
in the presence of interdependent links) can suddenly vanish by undergoing a unique first order
phase transition at a finite critical threshold, characterized a discontinuous and abrupt jump



(see Fig. 4), while simultaneously hosting critical phenomena. These results illustrate the
fundamental uniqueness of an interdependent network system, the occurrence of a first order

phase transition instead of second order when the networks are in isolation.
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Figure 4: The percolation probability as a function of the fraction of connected nodes in interdependent random

networks. n is the number of interdependent networks.

Although there are many implications in various network realizations of this model, it has never

been reproduced in real physical systems.

1.3 Random resistor networks

Transport in disordered media is a classic problem in statistical physics which attracts much
attention due to its broad range of applications. Examples include flow through porous material
and conductivity of semiconducting materials or systems that undergo a metal-insulator
transition. These problems have been mainly studied using a random resistor network, RRN,
model with bonds that have a resistance chosen from a probability distribution mimicking the
nature of the physical problem under consideration. Using this model, Kirkpatrick and others
[18-20] demonstrated that percolation on diluted d-dimensional lattices has a rich
phenomenology that can be adopted to explain conductivity in disordered media [21-23]. An
important result that emerged from the study of isolated resistor networks was that the
conductivity of the system and the GCC undergo a continuous phase transition at certain p,
[24]. ¢



1.4 Interdependent random resistor networks

The RRN can be extended to interdependent random resistor networks. Recently, a theoretical

analysis of a system of two interdependent resistor networks has been carried out [25], showing

that this system exhibits explosive collective behaviors resulting in first order phase transition.

In these simulations, interdependent couplings are taken to represent interactions between

current flows. Hence, a node in one layer can be considered as functional if and only if there is

current flowing through it and also through the node that it depends on in the other network.

Fig. 5 shows the main result of the simulations.
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Figure 5: a) Sketch of the model - the red nodes have current flowing through them, whilst green ones do not.

Note that the currents flow only through electrical connection within each layer, but cannot flow from one

layer to another. b) the MGCC as a function of active nodes in the system.

It is seen that the MGCC undergoes an abrupt, discontinuous first order phase transition, in

contrast to the second order transition obtained in a single RRN.



1.5 Superconductivity and disordered superconductors
In our work we use disordered superconductors in order to apply interdependent networks to a
real physical system. The phenomenon of superconductivity is well understood in a perfect
crystal (i.e., in the absence of impurities) thanks to the work of Bardeen, Schrieffer, and Cooper
(BCS) [26]. Anderson extended the theory and predicted that superconductivity can exist even
in weakly disordered superconductors with non-magnetic impurities [27]. However,
experiments showed that for strong enough disordered thin films the system transits into an
insulator state [28-31], in what has been called the superconductor insulator transition (SIT).
Experimentally a wide variety of tuning parameters, g, was used for the SIT, including
thickness, magnetic field, disorder level, chemical structure, etc. [29, 31-32, 33-40].

An example for an SIT can be seen in Fig. 6 that presents transport measurements in a
sample of an amorphous indium oxide (a-In0) film driven continuously through a disorder-

induced SIT. Changing the disorder level is achieved by low-temperature thermal annealing.
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Figure 6: Ry versus T of an a-In0 film for different annealing stages. The dashed line curve separates the

insulating and superconducting stages. Taken from [41].



In these highly disordered superconductors [42] it has been established that they may have
regions with different normal state resistance (Ry), critical temperature (T,) and critical current
(1.). Fig. 7 demonstrates the spatial distribution of the superconducting energy gap, 4, on a

disordered superconductor pointing through inhomogeneities in T.

Aluv]
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Figure 7: Spatial fluctuations of the superconducting gap, 4, in thin films of TiN, a disordered superconductor.

Inhomogeneities in 4 are seen on a scale of a few tens of nanometers [42].



2 Motivation and Potential Outcome

Our research is the first attempt to create a real-world physical system of interdependent
resistors networks and to understand the physical mechanism of dependency interactions in a
solid-state device. This is done by developing a system of disordered superconducting networks
coupled by a heat conducting medium, measuring it and analyzing the critical phenomena
around T,.

As described in the theoretical background section, systems of interdependent networks
must contain two different kinds of interactions (see Fig. 8):

a. Connectivity interactions - interactions between nodes in the same network.

b. Dependency interactions - crossing interactions between dependent nodes.
In our system, the current passing through the networks acts as the connectivity links and heat
that flows between the networks, via a heat conducting medium, serves as the dependency
links. The medium is an electrical insulator separating the two conducting networks.

Figure 8: Sketch of the interdependent resistor networks. Current can flow through blue nodes in network A and

red nodes in B. In addition, there are dependency links between the networks.

Our experimental idea is based on the fact that, because of the disorder, each network link
undergoes a metal-superconductor transition at a different critical temperature, T, and different
critical current, 1.

We initiate the system at low temperatures to ensure that all the links are in the
superconductor phase, and then we adiabatically increase the heat-bath temperature close to
the average critical temperature T,. Consequently, some superconducting links randomly
switch to a normal metal phase, thus causing a dissipative current flow and heating. Due to
thermal coupling, this local temperature increases and heats the superposed links in the other
layer, heating in turn an increasingly growing number of links. This feedback thermal process

10



continues while developing a voltage across the network, leading to a cascade of failures and
a first-order phase transition.

The main outcome of this project is likely to have a scientific and economic impact with
the high gain of creating brand new generations of complexity-based material. In fact, besides
being effective in unveiling the underlying mechanisms of these novel phase transitions whose
importance is indeed interdisciplinary, we created the very first prototype of an interdependent
complex system by physically realizing interdependent interactions between systems in terms
of local transfer of heat. On the scientific side, our results have the natural side effect of
“breathing life” in the large community of network scientists, opening new directions of both
theoretical and experimental research. On a more practical side, by grasping the underlying
mechanisms of the propagation of avalanches, we have opened the road to engineer novel
materials based on abrupt transitions, paving the way to the creation of new highly-sensitive
Sensors.

An example for such a sensor could be the single photon detector. Utilizing a system of
interdependent superconducting networks can create the situation that a collision of a single
photon on a random link of the network would generate heat that destroys the link by exceeding
its critical temperature. This leads to a cascade of failures resulting in abrupt transition of the

entire system, thus giving rise to an extremely sensitive and effective sensor.

11



3 Experimental

In order to fabricate a real-world physical system of interdependent superconducting networks
we need a sample with three layers. The first (“bottom”) and the third (“top”) layer are
disordered superconductor networks and the second layer is a coupling layer that must be a

strong electrical insulator and reasonable thermal conductor (see Fig. 9)

Figure 9: Sketch of our interdependent superconducting networks system. Two superconducting networks (Lst

and 3rd layer) are coupled by an insulating medium (2nd layer).

3.1 Substrates
Because we are dealing with thin solid-state films, we need to use a substrate.
The two main properties of the substrate are important for our experiment:

1. Thermal conductivity - the heat that is generated within each network can spread also
through the substrate. The thermal conductivity of the substrate is thus important for
the results.

2. Electrical resistivity - the current should be allowed to flow only within each network
and not through the substrate. That it's why we need to ensure that the substrate is a

strong electrical insulator.

3.1.1 Si versus SiO (glass)

We used two substrates, Si and SiO, (glass) wafers. These are chosen because both are strong
insulators and have reasonable thermal conductivity. Still, there is a difference in their thermal
conductivity at low temperature.

Fig. 10 shows the thermal conductivity of several materials from which we can estimate the

thermal conductivity of Si at 3K to be ~ 200 [%] and the thermal conductivity of glass at 3K

to be ~ 0.2 [—].
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Hence, the thermal conductivity of Si close to our base temperature is larger than that of glass

by 3 orders of magnitude.
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Figure 10: Thermal Conductivity vs Temperature of a number of materials [43].

3.2 Superconducting networks

We used two different superconducting materials in order to fabricate the networks and perform
our experiment. The first is amorphous Indium oxide (a-In0), a disordered superconductor
with wide spread of T, and I, and the other is Nb, a relatively ordered superconductor.
a. When high purity In, 05 is deposited on a substrate, an amorphous Indium Oxide
(a-In0) film is formed with a certain Oxygen deficit. This oxygen deficit depends on
the partial oxygen pressure in the chamber during the deposition process and controls
the resistance of the sample.
b. Nb thin film is an example for relatively ordered superconductor, hence it is

characterized by a narrow range of T..

13



3.3 Network geometry

Our network consists of 31X31 stripes, each stripe 4um wide and 720um long (Fig. 11). This
structure generates 900 internal squares where each square is surrounded by 4 superconducting
segments with dimension 4X20 (wm). The network was fabricated using standard
photolithography and lift-off procedures utilizing the Heidelberg instruments MLA 150
machine located in the Bar-lIlan Institute of Nanotechnology & Advanced Materials (BINA

center).

4pm

20pm

v

Figure 11: Left: Optical image of our network. Right: Sketch of segment in the network, each segment of the

network has dimensions of 4X20 (um).

3.4 Coupling medium
As mentioned, the medium must be a strong electrical insulator and decent thermal conductor.

We chose to use Al,05. Although this material is a strong insulator it has relatively large
thermal conductivity, i.e ~ 1[%] at 3K (Fig. 12). An advantage of using Al, 05 is that it is

relatively easy to create a pinhole free thin film.

T T
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Figure 12: Thermal Conductivity in units of [ﬁ] vs Temperature of Al203 [44].
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3.5 Sample preparation
The preparation of the interdependent superconducting networks model was performed using
the following procedure:
1. On a substrate (Si or glass) we evaporated the bottom network using one of our
superconducting materials.

a. We evaporated a thin film of 50nm of a-In0 with partial oxygen pressure in
the range of 60 — 80uTorr. This process results in disordered superconductor
with T, = 3K. The e-beam evaporation was done by using the evaporator in our
lab.

b. We evaporated a thin film of 50nm of Nb. This process results in relatively
ordered superconductor with T, = 9K. The evaporation of the Nb performed in
Dr Michael Stern lab’s.

2. For the insulating medium we evaporated a thin film of 100 — 150nm of Al,00n top
of the bottom network that overlapped it fully. The evaporation was performed with

high partial oxygen pressure in order to achieve a pinhole free film.

3. On top of the Al,0; we evaporated a second network completely identical and
overlapping the first one.

4. We fabricated two (4nm Tin + 35nm Au) contacts at the edges of each network in
order to perform transport measurements. The contacts were written by
photolithography.

Fig. 13 shows a microscopic image of our sample.

Figure 13: Microscopic image of the sample. The bottom network and the top network overlap each other and

are separated by a transparent layer of insulator (Al,05). The edges of each network are connected to gold contacts.
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3.6 Experimental setup

In order to conduct our experiment, we used RC-102 liquid helium flow cryostat and adapted
it to fit our measurement. We created a sample holder and radiation shield as seen in Fig. 14.
In addition we wired the sample holder to a room temperature connector.

a)

Figure 14: a) The RC-102, flow cryostat. b) The first radiation shield of the RC-102. ¢) The additional Cu
radiation shield. d) The sample mount that was adapted to improve our thermal coupling. €) The sample holder

connected to the sample mount.

The cryostat is cooled down by a continuous flow of liquid helium and is capable of a base

temperature of 1.8K.

3.7 Measurement process
We performed DC transport measurement using a Keithley 2410 source meter and Keithley
2000 multimeter for each network. We used LakeShore 330 to control the temperature in the
system using a 25/ heater and DT-670 thermometer that were placed inside the cryostat.
Our measurement process begins with the measurement of a single superconducting network
in order to characterize its behavior near criticality. We performed transport measurements
with heating-cooling cycles in the temperature range base to 10K for different values of
current. Thus, we get a phase diagram for I, and T,. After classifying the single network case
we continued to study an interdependent superconducting network sample.

We checked that there is no short between the networks by measuring the junction

resistance between each pair of cross contacts.

16



The coupling between the networks is created by passing the same current within both networks
simultaneously, thus generating dependency links based on heat-transfer. When a link in a
network undergoes a metal-superconductor transition it generates heat that spreads to the other
network through the medium.

We performed transport measurements for the coupled networks with heating-cooling

cycles for different values of current, and generated a phase diagram for /. and T,.

17
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4 Results

4.1 Single network characterization

In this subsection we describe our results for the single superconductor network. We measured

more than ten samples showing similar

S; - 50nm Nb network on Si substrate.
S, - 50nm a-In0 network on Si substrate.

S5 - 50nm Nb network on glass substrate.

S, - 50nm a-In0 network on glass substrate.

4.1.1 Transition width

results.

We focus on four

Fig. 15 shows the R(T) of S; and S, (Nb and a-InO on Si substrate respectively).
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Figure 15: Resistance versus Temperature of S; (a) and S, (b) for the cooling cycle. taken at different bias

currents.

It is seen that as we increase the current, the shape of the transition transits from a broad and

continuous transition to a sharp and abrupt transition.

We define R,,,,, to be the maximum resistance of the sample in the temperature range of

base to 10K and the transition width to be:
AT _ T,-Ty
T, T

18




Here T, is the temperature at which the resistance equals 0.9R,,,,, and T; is the temperature at
which the resistance equals 0.1R,,,. T, is defined as the temperature at which the resistance
is equals 0.5R,,4-

Fig. 16 shows the transition width as a function of the power applied to the network given
by P = I?R where I is the bias current and R is the resistance of the sample at 10K (this

resistance does not change much for T > T,).
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Figure 16: AT/T. of S;, S, as a function of power. The data points were extracted from Fig. 15.

It is seen that the transition width decreases as the power on the network is increased. In

addition, the transition width of Nb is smaller than that of a-In0, hence its transition is sharper.
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4.1.2 Width of hysteresis
Fig. 17 shows the R(T) of samples S; and S, (Nb and a-InO on a glass

substrate

respectively), for both cooling and heating cycles.
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Figure 17: Resistance versus Temperature of S; (a) and S, (b) for both cooling and heating cycles. Empty circles

describe the heating direction while full circles describe the cooling direction. taken at different bias currents.

Again, it is seen that increasing the current causes the transition width to increase, making the

transition sharper. In addition, above a certain bias current (which is material dependent), the

R(T) curves exhibit hysteretic behaviour.

Fig. 18 shows the hysteresis width, defined as:
AThys = Tcl - Tcz (2)
as a function of the power on the network. Here T, is the temperature at which the resistance

equals 0.5R,q, in the heating cycle and T, is the temperature at which the resistance equals

0.5R,,4 In the cooling cycle.
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Figure 18: The hysteresis width as a function of the power for S5 (a) and S, (b).

It is seen that the width of the hysteresis increases as the power on the network increases.

4.1.3 Substrates comparison

Fig. 19 shows the transition width (4T /T.) as a function of the power on the network for S;

and S5 (a-InO on a Si substrate and a glass substrate respectively).
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Figure 19: The transition width of S; and S;. The data points were extracted from Fig. 15 b and Fig. 17 b.

These results show clearly that for P > 0.1mW a glass substrate, which has lower thermal

conductivity, has smaller transition width, meaning that its transition is sharper.
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4.2 Coupled networks

In this subsection we describe the results of coupled networks. We focus on system of two
identical networks of a-In0O coupled by Al, 05 deposited on glass substrate.
We mark our networks as follows:

1. Bottom Network - 50nm a-InO network on glass substrate.

2. Top Network - 50nm a-In0 network on the Al,05 coupling layer.

4.2.1 Uncoupled network behavior
We start by showing the result for each network on its own. Fig. 20 shows the R(T) for the

bottom and top network respectfully.
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Figure 20: Resistance versus Temperature of the bottom (a) and the top (b) network for the cooling and heating
cycles. Empty circles describe the heating direction while full circles describe the cooling direction. taken at

different bias currents.

These results show, again, that increasing the current causes the transition width to decrease
for each network on its own.
It is seen that both of the networks do not exhibit hysteretic behavior and abrupt transitions

below a current of 25uA4, the green curve.
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In order to demonstrate this, we plot the normalized R(T) curves of the top and bottom network

together for current of 24uA as shown in Fig. 21.
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Figure 21: Normalized resistance versus temperature of the top (red curve) and bottom (blue curve) for a current

of 24uA. Empty circles describe the heating direction while full circles describe the cooling direction.

4.2.2 Coupled network behavior
Fig. 22 shows the R(T) curves of the top and bottom network when they are coupled.
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Figure 22: Resistance versus Temperature of the bottom (a) and the top (b) network for the cooling and heating
cycles when they are coupled. Empty circles describe the heating direction while full circles describe the cooling

direction. taken at different bias currents.
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It is seen that both of the networks exhibit an abrupt transition and hysteretic behavior for
currents above 20uA.
Fig. 23 shows a comparison between the behavior of the coupled networks to the behavior

of each network separately for current of 24uA.
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Figure 23: Normalized resistance versus temperature of the top (red and orange curves) and bottom (blue and
green curves) network for a current of 24uA, measured while they are coupled (orange and green squares) and in
isolation (red and blue circles). Empty symbols describe the heating direction and full symbols describe the

cooling direction.

Surprisingly, measuring the coupled networks shows an abrupt transition and hysteretic
behavior with a shred T, which is determined by the network with the lower transition
temperature, while measuring each network separately results in a continuous transition with a

unique T,.
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4.2.3 Width of hysteresis

Fig. 24 shows a comparison between the width of the hysteresis (4T, - Eq. 2) of the coupled

networks versus that of the single network.
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Figure 24: The comparison of width of the hysteresis of the networks while they are coupled and in isolation,

for the bottom network (a) and for the top network (b). data was extracted from figs 20 and 22.

It is seen that while measured separately, each network needs more power than of the coupled

case in order to exhibit a hysteretic behavior. In addition, the hysteresis width for the coupled

networks is much wider for each applied power.
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5 Summary and Discussion

5.1 Summary of main results

Below we summarize the main results described in the previous section.

Single network

At low current the superconductor-insulator transition is rather broad. As the current is
increased the transition becomes sharper.

For any chosen current the Nb transition’s is much sharper than that of the a-In0. This
can be explained by the fact that the disorder of a-Ino is larger, and hence has a wider
spread of I. and T..

Above a certain current the R(T) curves exhibit an abrupt transition and hysteretic
behaviour. As the current is increased the width of the hysteresis becomes wider.

The substrate of the sample affects the results. For a better thermal conductive substrate,

a larger power has to be applied in order to observe an abrupt transition.

Coupled networks

At low current in both networks the R (T") curves exhibit broad superconductor-insulator
transitions. As the current is increased the transition becomes sharper in both networks.
Above a certain current the networks exhibit an abrupt transition with a shared T,. which
is determined by the network with the lower T,.

For a certain current (24uA for the sample of Fig. 25), the coupled networks exhibit an
abrupt transition and hysteretic behaviour, in contrast to the continuous, non hysteretic
transition which is observed for each network when it is in isolation, for the same
current.

For each chosen current, the width of the hysteresis on each coupled network is wider

than the width of the hysteresis of the isolated network for the same current.
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5.2 Model

To reach a theoretical understanding of the phenomena observed in the experiments we
collaborated with Prof. Shlomo Havlin’s group in order to develop a new iterative model based
on the theory of interdependent networks that contains two different kinds of interactions:

c. Connectivity interactions - current that flows between nodes.

d. Dependency interactions - heat that propagates between dependent nodes.

5.2.1 General idea of the model

We start by considering the transition from a broad to an abrupt superconductor-insulator
transition with increasing current. For a single network this can be explained in terms of a
“runaway” process. When the network is initiated at low temperature, all the nodes are in the
superconductor phase. During The network heating, the temperature exceeds T, for a few
random nodes, thus turning them normal. This leads to redistribution of the current flow within
the network, causing other nodes to switch to a normal metal phase. The process is repeated
and eventually, it leads to an avalanche and an abrupt transition.

The “runaway” process is indeed effective in explaining the results in a single network.
However, we see similar effects in a coupled network where this process is not relevant.
Therefore, we suggest a new, iterative model based on interdependent networks.

We begin with analyzing the system at low temperature where all the nodes of both networks
are in the superconductor phase. As the system is heated, some random nodes in at least one of
the networks undergo a superconductor - metal phase transition, thus causing a dissipative
current flow and heating. Due to thermal coupling, this local temperature increases and heats
the superposed nodes in the other network, heating in turn an increasingly growing number of
nodes. This feedback thermal process continues while developing a voltage across the network,

leading to a cascade of failures and a first-order phase transition.
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This process is schematically described in Fig. 25

Figure 25: Sketch of the heating process of the coupled networks. The red gradient demonstrates the disorder in
each network and dark red sections are in the normal phase. The current that flows within the network describes

the connectivity links. The red beams between the networks describe the dependency links.

Since this model can explain the results in two coupled networks, and since the results for a
single network are similar, we suggest that this model can be considered as an alternative model
for each individual network as well. When all the nodes of a single network are in the
superconductor phase and the system is heated, some random nodes in the network undergo a
superconductor - metal phase transition, thus causing a dissipative current flow and heating.
Due to heat propagation within the network, the temperature across the network increases and
heats other nodes, heating in turn an increasingly growing number of nodes. This feedback
thermal process can lead to a cascade of failures and a first-order phase transition.

The process of heat propagation in a single network of our network is schematically
described in Fig. 26

Figure 26: Sketch of the heating process of a single network. The red gradient demonstrates the disorder and

dark red sections are nodes in a normal phase.

If this model is relevant, the results depend on the substrate because it also carries heat. Indeed,
we see in the experiment that for a better thermal conductivity substrate a larger power has to
be applied in order to observe an abrupt transition (see Fig. 21). This can be explained by the
fact that for a better thermal conductive substrate, more heat is dissipated inside the substrate
instead of propagating within the network, thus, less dependency links exist in the network.

28



5.2.2 Theoretical analysis

We model our network as a random array of Josephson Junctions. Where each network link is
considered as a Josephson weak link. The model is iterative, each iteration in the simulation
corresponds to change at the temperature of the sample in reality. After each iteration,
Kirchhoff equations are resolved and the state of every junction in the network is reconsidered

according to Josephson Junction characteristic as follows:

@)

o (superconduetor)
RY = { Ry, (normal)
Vi /IH(T), (intermediate)
Where V¥/ represents the potential differences between neighboring nodes and 1.%/(T) the
critical current of the junction that can be calculated from Eg. 4.

IM(T) = 1M (0)(1 = T/T.")? @)
The critical temperature of each junction, Tci'j , In both networks is drawn from a Gausian
distribution (with the mean value taken as the bulk T,) that characterizes the level of disorder
in the network. The critical current of each junction at zero temperature, 1.*/(0), is obtained
from the Ambegaokar—Baratoff relation:

1" (0)Ry = mA(0)/2e (5)
where R, is the metal state resistance and 4(0) = 1.76KgT, is the energy gap according to
the BCS mean field formula.

After considering the state of all the junction in both networks, we evaluate the
temperature of each network by considering ohmic dissipation (P = I?R) within and between

the networks and by the relation described in Eqg. 6.

The\ gy (044 @ RuI3
Ceff | — 4 [ FAa _.us) ( A :}) ;
(Ieé.f) (“13.-1. &5:7:; Rply (6)
The coefficients «; ; describe the heat conductance within and between the networks (A, B).

We perform this analysis both for coupled networks and for a single network where the B
components are taken to be zero. These iterations are continued until a full R(T) curve is

accomplished.
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In order to estimate the heat conductance within a network (a,, = agg) We use the following
algorithm:

1. Define the reference R(T) curve as the minimal current curve.

2. Look for the resistance of each R(T) curve for a chosen temperature.

3. Find the appropriate temperature for this resistance in the reference curve.

4. Calculate the temperature difference AT = T posen — Tappropriate fOr €aCh curve.

5. Plot AT (P) where P is the power applied on the network.

6. ayy is estimated from the slope of AT (P).

Fig 27. illustrate this process for a a-InO network at 3K.
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Figure 27: a) R(T) of an a-Ino network plotted for different currents. b) AT of each curve (color fit) compared

to the reference curve. c) AT as a function of P.

We find that the relevant heat conductance within our a-InO network is a = 105[%]. However,
the distance between superposed nodes is one order of magnitude smaller compared to the

distance between adjacent nodes, thus, a,p = au5 = 106[%].
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5.3 Comparison between experiment and theory

5.3.1 Coupled networks

Fig. 28 shows a comparison between the experiment and the simulation results for coupled

networks.
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Figure 28: Normalized resistance versus temperature in experiment (a - taken from Fig. 23) and simulation (b)

of the top (red curves) and bottom (blue curves) networks for a current of 24uA, measured while they are coupled

(squares) and in isolation (circles). The bottom panels are phase diagram, I(T), of both coupled networks based

on experiment (c) and simulations (d) for weak coupling (low currents - not hysteretic) and strong coupling (high

currents - hysteretic). red and orange curves describe the heating cycles, blue and purple curves describe the

cooling cycles. Simulations Parameters: I; .(0) =

Qs = 3 %106 [%], R, = 5000.

581A, 1, (0) = 54uA, @uy = agp = 5%10° [2], ayp =
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It is seen (a, b) both in experiment and simulation that measuring the coupled networks for
current of 24uA shows an abrupt transition and hysteretic behaviour with a shred T,, while
measuring each network separately for the same current results in a continuous transition with
a different T, In each network. The shared T, is determined by T, of the network with the lower
transition temperature. This is explained by the fact that at this temperature, some nodes in that
network undergo a superconductor-metal transition. These transitions drive the process of the
interdependency between the networks and finally leads to cascade and an abrupt transition.
In addition, it is seen (c, d) that for weak coupling (low currents) there is no hysteretic
behavior for both networks and they behave like a single network with unique T,.. Above a
certain current the networks are coupled with a shared T. while they exhibit a hysteretic

behavior.
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5.3.2 Single network
Fig. 29 shows a comparison between the experiment and the simulation results for a single

network.
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Figure 29: Normalized resistance versus temperature in experiment (a - taken from Fig. 19 b) and simulation (b)
for different currents. Phase diagram, I(T), based on experiment (c) and simulation (d). Blue and red curves
describe cooling and heating cycles respectively. I represents the superconductor phase, 111 represents the normal

phase and II represent the hysteretic behavior, meaning that your phase is determined according to the cycle.

Simulations Parameters: I.(0) = 60ud, @ = 5 * 10° [%] and Ry = 50042,

It is seen (a, b) both in experiment and simulation that above a certain current, the network
exhibits hysteretic behavior and an abrupt transition.

In addition, it is seen (c, d) that for low currents there is no hysteretic behavior and above
a certain current a new phase appears (/1 phase) while hosting hysteretic behaviour and abrupt
transition. In this phase, the state of the network (superconductor or normal) is determined by
the cycle of the measurement, superconductor for heating cycle and normal for the cooling

cycle.
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5.4 Conclusions and future plans

The experiment, together with the theoretical model, show that the theory of interdependent
networks can be applied in a real physical system i.e., interdependent superconducting
networks. This sample is the first attempt to manifiestate and characterize the theory of
interdependent networks in a real-world physical system. We believe that our experiment can
also lead to new theoretical research avenues such as the application of the theory also in a
single network and understanding the effect of disorder on the system (we have seen that the
network with the lower transition temperature is the dominant for the model). On a more
practical side, by grasping the underlying mechanisms of the propagation of avalanches, we
have opened the road to engineer novel materials based on abrupt transitions, paving the way
to the creation of new highly-sensitive sensors. An example for such a sensor could be the
single photon detector as mentioned in the Motivation section.

This project focused on two coupled networks via heat layer, however, this will only be the
first step. We plan to extend our study from two to more systems that include different types
of interactions (for example, magnetic field). Building a physical multilayer system is indeed
a fascinating perspective, which may potentially lead to the discovery of new physical

properties so far overlooked, or to engineer new generations of complexity-based materials.
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