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Abstract 
In nature, networks rarely appear in isolation. They are typically elements in larger systems 

and can have non-trivial effects on one another. In the light of this situation the model of 

interdependent networks (i.e.  systems where the functionality of a node in one layer depends 

on the functionality of other nodes in the remaining ones) was developed. In particular, after a 

seminal article [1], increasing evidence has been collected showing that interdependent 

networks exhibit unique phenomena resulting in abrupt transitions. A striking example is the 

famous 2003 Italy blackout. 

Although the model of interdependent network has been studied more than a decade, it has 

never been applied on real-world physical system. Our study, is the first attempt to do this. For 

this purpose, we coupled two disordered superconducting networks via a medium that is an 

electrical insulator but a heat conductor. Because of the disorder, each node in a network has 

its own critical temperature and critical current (𝑇𝑐, 𝐼𝑐), thus, we can control the functionality 

of nodes in the networks. The coupling between the networks is created by passing the same 

current within both networks simultaneously, thus generating links based on heat-transfer 

between the networks.  

We preformed Resistance vs Temperature measurements of both networks simultaneously 

and each network separately for different currents. Our main result is that the RT curves of 

both coupled networks for a certain current exhibit an abrupt transition and hysteretic behaviour 

with a shared 𝑇𝑐, while the RT curve of each uncoupled network for the same current exhibit a 

continuous transition with a different 𝑇𝑐 in each network. The shared 𝑇𝑐  is determined by 𝑇𝑐 of 

the network with the lower transition temperature. 

We collaborated with Prof. Shlomo Havlin’s group and developed a theory  based on 

random network of Josephson Junctions that can explained our results.  

We trust that our experimental results, together with the simulation results of Havlin 

Group’s will pave the way to engineer interdependent physical processes, whose achievement 

may lead to new technological applications such as ultra-sensitive sensors. 
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1 Theoretical Background 

1.1 Network percolation theory 

There are only a few available theoretical techniques for dealing with flow in disordered, 

random and complex systems. One of the nicest and simplest of these techniques is the 

percolation theory. A manifestation of this theory deals with a model of a random graph, in 

which the bonds between each two neighboring nodes may be open with probability 𝑝 or closed 

with probability 1 − 𝑝. Adjacent opened bonds are considered as clusters, and each bond state 

is independent of the state of its adjacent bonds. The main research question of this model is 

what critical fraction of bonds must be open in order to connect the edges of the graph, this 

critical fraction is called the percolation threshold and marked as 𝑝𝑐. 

A simple physical example for the percolation model can be the electrical-network. This 

model describes a network represented by a large 2D square-lattice of unit conductors that is 

attacked by a crazed man who, armed with a wire-cutter, proceeds to cut the unit conductors at 

random as illustrated in Fig. 1. His aim is to break the connectivity in the network. In this case 

the main question is: what critical fraction of bonds (unit conductors) must remain un-cut in 

order for the electrical network to still be connected. This question, of which can be given a 

definite answer by percolation theory, illustrates the most significant issue of the percolation 

model: the existence of percolation-transition at which the long-range connectivity of the 

system disappears or, for reasons of symmetry, appears. This basic transition, which occurs 

abruptly, constitutes 𝑝𝑐. 
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Figure 1: Top - electrical circuit that contains resistors network as one of its components. 

Bottom - The current within the network as a function of uncut bonds (𝑝). When 𝑝 is larger than 𝒑𝒄, current is 

still flowing and there is connectivity in the system. When 𝑝 is less than 𝒑𝒄 current vanishes since there is no 

connected path of unit conductors that traverses the network from one side to other [2].  

 

One of the main parameters of percolation theory is the percolation probability (𝑃(𝑝) or 𝑃∞). 

It describes the probability to randomly choose a bond from the entire system that is connected 

to a cluster that traverses the network. Fig. 2 illustrates the behavior of 𝑃(𝑝) in a 2D 

percolation. 

Figure 2: 𝑃(𝑝) as a function of connected bonds, 𝑝 [3]. 
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𝑃(𝑝) shows the qualitative change at 𝑝𝑐 as long-range connectivity transfers from zero where 

the network is disconnected to a finite value where a cluster that traverses the network first 

appears. It was found out that close to the threshold, the behavior of 𝑃(𝑝) is universal 

(independent on the network and type of interactions) and can be described by critical exponent 

(𝑃(𝑝) ∝  (𝑝 − 𝑝𝑐)𝛽). The qualitative shape and the universality of 𝑃(𝑝) indicates that the 

system undergoes a second order phase transition, 𝑃(𝑝) being the order parameter which drops 

to zero rapidly but continuously as 𝑝𝑐 is approached. 

Another property of network percolation theory which is important for our research is the 

existence of the Giant Connected Component (GCC), which contains all the nodes that are 

connected to the cluster that traverses the network. 

1.2 Interdependent networks 

Single network percolation theory has been extensively developed and studied for a wide range 

of fields over the past few decades [4–10]. It was realized recently that many real-world 

systems include macroscopic subsystems which influence one another. Taking into account the 

mesoscopic organization of these interwoven structures has led to the understanding that 

interactions among systems can significantly modify the collective behaviors of processes 

acting on them, leading to a phenomenology that is unexpected if one considers the same 

systems in isolation [11–13]. One of the most interesting models describing an interacting 

complex system is the interdependent network model developed by our collaborator Prof. 

Shlomo Havlin [14]. This model describes a system of connected networks that exhibits 

cascading failures and explosive collective phenomena resulting in abrupt phase transitions. 

Remarkably, though being discontinuous and irreversible, these novel transitions display also 

critical scaling and are hence susceptible to universal features, whose study is in its infancy 

[15–17].  

The distinctive feature of the interdependent networks model is the existence of two types 

of links which represent two qualitatively different kinds of interactions. Within networks, 

links between nodes describe connectivity in the sense that physical process (e.g., electric 

current) can spread through the network, moving from one node to another. Between networks, 

on the other hand, links describe dependency relationships which cause dependent nodes to 

crucially influence each other, without letting the physical processes within each network hop 

to the other. The outcome of distinguishing between dependency and connectivity links 

becomes transparent when considering a percolation process to describe the system stability 
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against the failure of some of its components. In contrast with isolated systems, where the 

existence of at least one path that connects any randomly chosen node in the network to the 

GCC can be adopted as a proxy for functionality, in the presence of interdependencies the 

functionality of nodes is stricter. Even if a node is connected to the GCC, it will cease to 

function if the nodes upon which it depends on will cease to function. Therefore, while the 

connectivity links physically spread the damage within the networks, the dependency links 

spread instantaneously the information about local malfunctions across the networks. 

The interplay between these two types of links amplifies the propagation of failures which, 

in its turn, can ignite percolation cascades and lead to an abrupt collapse of the system. A 

generalization of percolation theory to interdependent networks was developed in Ref. [14] and 

was able to explain the famous 2003 Italy blackout (see Fig. 3). 

Figure 3: Illustration of an iterative process of the propagation of the famous 2003 Italy blackout using real-

world data from a power network (located on the map of Italy) and an internet network (shift above the map). a - 

One power station is removed (red node on map) from the power network and as a result the Internet nodes 

depending on it are removed from the Internet network (red nodes above the map). The nodes that will be 

disconnected from the giant cluster (a cluster that spans the entire network) at the next step are marked in green. 

b - Additional nodes that were disconnected from the Internet communication network giant component are 

removed (red nodes above map). As a result, the power stations depending on them are removed from the power 

network (red nodes on map). Again, the nodes that will be disconnected from the giant cluster at the next step are 

marked in green. c - Additional nodes that were disconnected from the giant component of the power network are 

removed (red nodes on map) as well as the nodes in the Internet network that depend on them (red nodes above 

map). 

 

It was found that, the mutual GCC (the MGCC, i.e., the set of nodes defined to be functional 

in the presence of interdependent links) can suddenly vanish by undergoing a unique first order 

phase transition at a finite critical threshold, characterized a discontinuous and abrupt jump 
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(see Fig. 4), while simultaneously hosting critical phenomena. These results illustrate the 

fundamental uniqueness of an interdependent network system, the occurrence of a first order 

phase transition instead of second order when the networks are in isolation.  

 

 

 

 

 

 

 

 

Figure 4: The percolation probability as a function of the fraction of connected nodes in interdependent random 

networks. n is the number of interdependent networks.  

 

Although there are many implications in various network realizations of this model, it has never 

been reproduced in real physical systems. 

1.3 Random resistor networks 

Transport in disordered media is a classic problem in statistical physics which attracts much 

attention due to its broad range of applications. Examples include flow through porous material 

and conductivity of semiconducting materials or systems that undergo a metal-insulator 

transition. These problems have been mainly studied using a random resistor network, RRN, 

model with bonds that have a resistance chosen from a probability distribution mimicking the 

nature of the physical problem under consideration. Using this model, Kirkpatrick and others 

[18-20] demonstrated that percolation on diluted d-dimensional lattices has a rich 

phenomenology that can be adopted to explain conductivity in disordered media [21-23]. An 

important result that emerged from the study of isolated resistor networks was that the 

conductivity of the system and the GCC undergo a continuous phase transition at certain 𝑝𝑐 

[24]. ‘ 
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1.4 Interdependent random resistor networks  

The RRN can be extended to interdependent random resistor networks. Recently, a theoretical 

analysis of a system of two interdependent resistor networks has been carried out [25], showing 

that this system exhibits explosive collective behaviors resulting in first order phase transition.  

In these simulations, interdependent couplings are taken to represent interactions between 

current flows. Hence, a node in one layer can be considered as functional if and only if there is 

current flowing through it and also through the node that it depends on in the other network.  

Fig. 5 shows the main result of the simulations. 

Figure 5: a) Sketch of the model - the red nodes have current flowing through them, whilst green ones do not. 

Note that the currents flow only through electrical connection within each layer, but cannot flow from one 

 layer to another. b) the MGCC as a function of active nodes in the system. 

 

It is seen that the MGCC undergoes an abrupt, discontinuous first order phase transition, in 

contrast to the second order transition obtained in a single RRN. 

 

 

 

 

 

 

 

 

a) b) 
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1.5 Superconductivity and disordered superconductors 

In our work we use disordered superconductors in order to apply interdependent networks to a 

real physical system. The phenomenon of superconductivity is well understood in a perfect 

crystal (i.e., in the absence of impurities) thanks to the work of Bardeen, Schrieffer, and Cooper 

(BCS) [26]. Anderson extended the theory and predicted that superconductivity can exist even 

in weakly disordered superconductors with non-magnetic impurities [27]. However, 

experiments showed that for strong enough disordered thin films the system transits into an 

insulator state [28-31], in what has been called the superconductor insulator transition (𝑆𝐼𝑇). 

Experimentally a wide variety of tuning parameters, 𝑔, was used for the 𝑆𝐼𝑇, including 

thickness, magnetic field, disorder level, chemical structure, etc. [29, 31-32, 33-40].  

An example for an 𝑆𝐼𝑇 can be seen in Fig. 6 that presents transport measurements in a 

sample of an amorphous indium oxide (𝑎-𝐼𝑛𝑂) film driven continuously through a disorder-

induced 𝑆𝐼𝑇. Changing the disorder level is achieved by low-temperature thermal annealing. 

Figure 6: 𝑅□ versus 𝑇 of an 𝑎-𝐼𝑛𝑂 film for different annealing stages. The dashed line curve separates the 

insulating and superconducting stages. Taken from [41]. 
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In these highly disordered superconductors [42] it has been established that they may have 

regions with different normal state resistance (𝑅𝑁), critical temperature (𝑇𝑐) and critical current 

( 𝐼𝑐). Fig. 7 demonstrates the spatial distribution of the superconducting energy gap, 𝛥, on a 

disordered superconductor pointing through inhomogeneities in 𝑇𝑐. 

Figure 7: Spatial fluctuations of the superconducting gap, 𝛥, in thin films of TiN, a disordered superconductor. 

Inhomogeneities in 𝛥 are seen on a scale of a few tens of nanometers [42]. 
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2 Motivation and Potential Outcome 
Our research is the first attempt to create a real-world physical system of interdependent 

resistors networks and to understand the physical mechanism of dependency interactions in a 

solid-state device. This is done by developing a system of disordered superconducting networks 

coupled by a heat conducting medium, measuring it and analyzing the critical phenomena 

around 𝑇𝑐.  

As described in the theoretical background section, systems of interdependent networks 

must contain two different kinds of interactions (see Fig. 8): 

a. Connectivity interactions - interactions between nodes in the same network. 

b. Dependency interactions - crossing interactions between dependent nodes. 

In our system, the current passing through the networks acts as the connectivity links and heat 

that flows between the networks, via a heat conducting medium, serves as the dependency 

links. The medium is an electrical insulator separating the two conducting networks. 

 

 

 

 

 

Figure 8: Sketch of the interdependent resistor networks. Current can flow through blue nodes in network A and 

red nodes in B. In addition, there are dependency links between the networks. 

 

Our experimental idea is based on the fact that, because of the disorder, each network link 

undergoes a metal-superconductor transition at a different critical temperature, 𝑇𝑐 and different 

critical current, 𝐼𝑐.  

We initiate the system at low temperatures to ensure that all the links are in the 

superconductor phase, and then we adiabatically increase the heat-bath temperature close to 

the average critical temperature 𝑇𝑐. Consequently, some superconducting links randomly 

switch to a normal metal phase, thus causing a dissipative current flow and heating. Due to 

thermal coupling, this local temperature increases and heats the superposed links in the other 

layer, heating in turn an increasingly growing number of links. This feedback thermal process 
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continues while developing a voltage across the network, leading to a cascade of failures and 

a first-order phase transition.  

The main outcome of this project is likely to have a scientific and economic impact with 

the high gain of creating brand new generations of complexity-based material. In fact, besides 

being effective in unveiling the underlying mechanisms of these novel phase transitions whose 

importance is indeed interdisciplinary, we created the very first prototype of an interdependent 

complex system by physically realizing interdependent interactions between systems in terms 

of local transfer of heat. On the scientific side, our results have the natural side effect of 

“breathing life” in the large community of network scientists, opening new directions of both 

theoretical and experimental research. On a more practical side, by grasping the underlying 

mechanisms of the propagation of avalanches, we have opened the road to engineer novel 

materials based on abrupt transitions, paving the way to the creation of new highly-sensitive 

sensors.  

An example for such a sensor could be the single photon detector. Utilizing a system of 

interdependent superconducting networks can create the situation that a collision of a single 

photon on a random link of the network would generate heat that destroys the link by exceeding 

its critical temperature. This leads to a cascade of failures resulting in abrupt transition of the 

entire system, thus giving rise to an extremely sensitive and effective sensor.  
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3 Experimental 
In order to fabricate a real-world physical system of interdependent superconducting networks 

we need a sample with three layers. The first (“bottom”) and the third (“top”) layer are 

disordered superconductor networks and the second layer is a coupling layer that must be a 

strong electrical insulator and reasonable thermal conductor (see Fig. 9) 

Figure 9: Sketch of our interdependent superconducting networks system. Two superconducting networks (1st 

and 3rd layer) are coupled by an insulating medium (2nd layer). 

3.1 Substrates 

Because we are dealing with thin solid-state films, we need to use a substrate. 

The two main properties of the substrate are important for our experiment: 

1. Thermal conductivity - the heat that is generated within each network can spread also 

through the substrate. The thermal conductivity of the substrate is thus important for 

the results. 

2. Electrical resistivity - the current should be allowed to flow only within each network 

and not through the substrate. That it's why we need to ensure that the substrate is a 

strong electrical insulator. 

3.1.1 Si versus SiO (glass) 

We used two substrates, 𝑆𝑖 and 𝑆𝑖𝑂2 (𝑔𝑙𝑎𝑠𝑠) wafers. These are chosen because both are strong 

insulators and have reasonable thermal conductivity. Still, there is a difference in their thermal 

conductivity at low temperature. 

Fig. 10 shows the thermal conductivity of several materials from which we can estimate the 

thermal conductivity of 𝑆𝑖 at 3𝐾 to be ∼ 200 [
𝑤

𝑚𝐾
] and the thermal conductivity of 𝑔𝑙𝑎𝑠𝑠 at 3K 

to be ∼ 0.2 [
𝑤

𝑚𝐾
]. 
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Hence, the thermal conductivity of 𝑆𝑖 close to our base temperature is larger than that of 𝑔𝑙𝑎𝑠𝑠 

by 3 orders of magnitude. 

Figure 10: Thermal Conductivity vs Temperature of a number of materials [43]. 

3.2 Superconducting networks 

We used two different superconducting materials in order to fabricate the networks and perform 

our experiment. The first is amorphous Indium oxide (𝑎-𝐼𝑛𝑂), a disordered superconductor 

with wide spread of 𝑇𝑐 and 𝐼𝑐 and the other is 𝑁𝑏, a relatively ordered superconductor. 

a. When high purity 𝐼𝑛2𝑂3 is deposited on a substrate, an amorphous Indium Oxide 

 (𝑎-𝐼𝑛𝑂) film is formed with a certain Oxygen deficit. This oxygen deficit depends on 

the partial oxygen pressure in the chamber during the deposition process and controls 

the resistance of the sample. 

b. 𝑁𝑏 thin film is an example for relatively ordered superconductor, hence it is 

characterized by a narrow range of 𝑇𝑐. 
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3.3 Network geometry 

Our network consists of 31X31 stripes, each stripe 4𝜇𝑚 wide and 720𝜇𝑚 long (Fig. 11). This 

structure generates 900 internal squares where each square is surrounded by 4 superconducting 

segments with dimension 4X20 (𝜇𝑚). The network was fabricated using standard 

photolithography and lift-off procedures utilizing the Heidelberg instruments MLA 150 

machine located in the Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA 

center). 

 

Figure 11:  Left: Optical image of our network.  Right: Sketch of segment in the network, each segment of the 

network has dimensions of 4X20 (𝜇𝑚). 

3.4 Coupling medium 

As mentioned, the medium must be a strong electrical insulator and decent thermal conductor. 

We chose to use 𝐴𝑙2𝑂3. Although this material is a strong insulator it has relatively large 

thermal conductivity, i.e ∼ 1[
𝑊

𝑚𝐾
] at 3𝐾 (Fig. 12). An advantage of using 𝐴𝑙2𝑂3 is that it is 

relatively easy to create a pinhole free thin film. 

 

 

 

 

 

 

 

Figure 12: Thermal Conductivity in units of [
𝑤

𝑐𝑚∗𝐾
] vs Temperature of Al2O3 [44]. 
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3.5 Sample preparation 

The preparation of the interdependent superconducting networks model was performed using 

the following procedure: 

1. On a substrate (𝑆𝑖 or 𝑔𝑙𝑎𝑠𝑠) we evaporated the bottom network using one of our 

superconducting materials. 

a.  We evaporated a thin film of 50𝑛𝑚 of 𝑎-𝐼𝑛𝑂 with partial oxygen pressure in 

the range of 60 − 80𝜇𝑇𝑜𝑟𝑟. This process results in disordered superconductor 

with 𝑇𝑐 ≃ 3𝐾. The e-beam evaporation was done by using the evaporator in our 

lab. 

b. We evaporated a thin film of 50𝑛𝑚 of 𝑁𝑏. This process results in relatively 

ordered superconductor with 𝑇𝑐 ≃ 9𝐾. The evaporation of the 𝑁𝑏 performed in 

Dr Michael Stern lab’s. 

2. For the insulating medium we evaporated a thin film of 100 − 150𝑛𝑚 of 𝐴𝑙2𝑂3on top 

of the bottom network that overlapped it fully. The evaporation was performed with 

high partial oxygen pressure in order to achieve a pinhole free film. 

 

3. On top of the 𝐴𝑙2𝑂3 we evaporated a second network completely identical and 

overlapping the first one. 

4. We fabricated two (4𝑛𝑚 𝑇𝑖𝑛 +  35𝑛𝑚 𝐴𝑢) contacts at the edges of each network in 

order to perform transport measurements. The contacts were written by 

photolithography. 

Fig. 13 shows a microscopic image of our sample. 

Figure 13: Microscopic image of the sample. The bottom network and the top network overlap each other and 

are separated by a transparent layer of insulator (𝐴𝑙2𝑂3). The edges of each network are connected to gold contacts. 
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3.6 Experimental setup  

In order to conduct our experiment, we used RC-102 liquid helium flow cryostat and adapted 

it to fit our measurement. We created a sample holder and radiation shield as seen in Fig. 14. 

In addition we wired the sample holder to a room temperature connector. 

Figure 14:  a) The RC-102, flow cryostat. b) The first radiation shield of the RC-102. c) The additional 𝐶𝑢 

radiation shield. d) The sample mount that was adapted to improve our thermal coupling. e) The sample holder 

connected to the sample mount. 

 

The cryostat is cooled down by a continuous flow of liquid helium and is capable of a base 

temperature of 1.8𝐾. 

3.7 Measurement process 

We performed DC transport measurement using a Keithley 2410 source meter and Keithley 

2000 multimeter for each network. We used LakeShore 330 to control the temperature in the 

system using a 25𝛺 heater and DT-670 thermometer that were placed inside the cryostat. 

Our measurement process begins with the measurement of a single superconducting network 

in order to characterize its behavior near criticality. We performed transport measurements 

with heating-cooling cycles in the temperature range base to 10𝐾 for different values of 

current. Thus, we get a phase diagram for 𝐼𝑐 and 𝑇𝑐. After classifying the single network case 

we continued to study an interdependent superconducting network sample. 

We checked that there is no short between the networks by measuring the junction 

resistance between each pair of cross contacts.  

 

 

b) d) a) e) c) 
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The coupling between the networks is created by passing the same current within both networks 

simultaneously, thus generating dependency links based on heat-transfer. When a link in a 

network undergoes a metal-superconductor transition it generates heat that spreads to the other 

network through the medium. 

We performed transport measurements for the coupled networks with heating-cooling 

cycles for different values of current, and generated a phase diagram for 𝐼𝑐 and 𝑇𝑐. 
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4 Results 

4.1 Single network characterization 
In this subsection we describe our results for the single superconductor network. We measured 

more than ten samples showing similar results. We focus on four samples.  

𝑆1 - 50𝑛𝑚 𝑁𝑏 network on 𝑆𝑖 substrate. 

𝑆2 - 50𝑛𝑚 𝑎-𝐼𝑛𝑂 network on 𝑆𝑖 substrate.  

𝑆3 - 50𝑛𝑚 𝑁𝑏 network on 𝑔𝑙𝑎𝑠𝑠 substrate.  

𝑆4 - 50𝑛𝑚 𝑎-𝐼𝑛𝑂 network on 𝑔𝑙𝑎𝑠𝑠  substrate. 

 4.1.1 Transition width 

Fig. 15 shows the 𝑅(𝑇) of 𝑆1 and 𝑆2 (𝑁𝑏 and 𝑎-𝐼𝑛𝑂 on 𝑆𝑖 substrate respectively). 

Figure 15: Resistance versus Temperature of 𝑆1 (a) and 𝑆2 (b) for the cooling cycle. taken at different bias 

currents. 

 

It is seen that as we increase the current, the shape of the transition transits from a broad and 

continuous transition to a sharp and abrupt transition.   

We define 𝑅𝑚𝑎𝑥 to be the maximum resistance of the sample in the temperature range of 

base to 10𝐾 and the transition width to be: 

     
𝛥𝑇

𝑇𝑐
=  

𝑇2−𝑇1

𝑇𝑐
      (1) 

a) - 𝑆1 b) - 𝑆2 



19 
 

Here 𝑇2 is the temperature at which the resistance equals 0.9𝑅𝑚𝑎𝑥 and 𝑇1 is the temperature at 

which the resistance equals  0.1𝑅𝑚𝑎𝑥. 𝑇𝑐 is defined as the temperature at which the resistance 

is equals 0.5𝑅𝑚𝑎𝑥.  

Fig. 16 shows the transition width as a function of the power applied to the network given 

by 𝑃 = 𝐼2𝑅 where 𝐼 is the bias current and 𝑅 is the resistance of the sample at 10𝐾 (this 

resistance does not change much for 𝑇 >  𝑇𝑐). 

Figure 16:  𝛥𝑇/𝑇𝑐 of  𝑆1, 𝑆2 as a function of power. The data points were extracted from Fig. 15. 

 

It is seen that the transition width decreases as the power on the network is increased. In 

addition, the transition width of 𝑁𝑏 is smaller than that of 𝑎-𝐼𝑛𝑂, hence its transition is sharper. 
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4.1.2 Width of hysteresis 

 Fig. 17 shows the 𝑅(𝑇) of samples 𝑆3 and 𝑆4 (𝑁𝑏 and 𝑎-𝐼𝑛𝑂 on a 𝑔𝑙𝑎𝑠𝑠 substrate 

respectively), for both cooling and heating cycles.  

 

Figure 17: Resistance versus Temperature of 𝑆3 (a) and 𝑆4 (b) for both cooling and heating cycles. Empty circles 

describe the heating direction while full circles describe the cooling direction. taken at different bias currents. 

 

Again, it is seen that increasing the current causes the transition width to increase, making the 

transition sharper. In addition, above a certain bias current (which is material dependent), the 

𝑅(𝑇) curves exhibit hysteretic behaviour.   

 

Fig. 18 shows the hysteresis width, defined as:  

𝛥𝑇ℎ𝑦𝑠  =  𝑇𝑐1
− 𝑇𝑐2

       (2) 

as a function of the power on the network. Here 𝑇𝑐1
 is the temperature at which the resistance 

equals 0.5𝑅𝑚𝑎𝑥 in the heating cycle and 𝑇𝑐2
 is the temperature at which the resistance equals 

0.5𝑅𝑚𝑎𝑥 in the cooling cycle. 

 

 

a) - 𝑆3 b) - 𝑆4 
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Figure 18:  The hysteresis width as a function of the power for 𝑆3 (a) and 𝑆4(b).  

 

It is seen that the width of the hysteresis increases as the power on the network increases. 

4.1.3 Substrates comparison 

Fig. 19 shows the transition width (𝛥𝑇/𝑇𝑐) as a function of the power on the network for 𝑆1 

and 𝑆3 (𝑎-𝐼𝑛𝑂 on a 𝑆𝑖 substrate and a 𝑔𝑙𝑎𝑠𝑠 substrate respectively). 

Figure 19:  The transition width of 𝑆1 and  𝑆3. The data points were extracted from Fig. 15 b and Fig. 17 b. 

 

These results show clearly that for 𝑃 > 0.1𝑚𝑊 a glass substrate, which has lower thermal 

conductivity, has smaller transition width, meaning that its transition is sharper. 

a) - 𝑆3 b) - 𝑆4 
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4.2 Coupled networks 

In this subsection we describe the results of coupled networks. We focus on system of two 

identical networks of 𝑎-𝐼𝑛𝑂 coupled by 𝐴𝑙2𝑂3 deposited on 𝑔𝑙𝑎𝑠𝑠 substrate. 

We mark our networks as follows: 

1. Bottom Network - 50𝑛𝑚 𝑎-𝐼𝑛𝑂 network on 𝑔𝑙𝑎𝑠𝑠 substrate. 

2. Top Network - 50𝑛𝑚 𝑎-𝐼𝑛𝑂 network on the 𝐴𝑙2𝑂3 coupling layer. 

4.2.1 Uncoupled network behavior 

 We start by showing the result for each network on its own. Fig. 20 shows the 𝑅(𝑇) for the 

bottom and top network respectfully.   

 

Figure 20: Resistance versus Temperature of the bottom (a) and the top (b) network for the cooling and heating 

cycles. Empty circles describe the heating direction while full circles describe the cooling direction. taken at 

different bias currents. 

 

These results show, again, that increasing the current causes the transition width to decrease 

for each network on its own.  

It is seen that both of the networks do not exhibit hysteretic behavior and abrupt transitions 

below a current of 25𝜇𝐴, the green curve.  

  

 

a) - Bottom b) - Top 
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In order to demonstrate this, we plot the normalized 𝑅(𝑇) curves of the top and bottom network 

together for current of 24𝜇𝐴 as shown in Fig. 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Normalized resistance versus temperature of the top (red curve) and bottom (blue curve) for a current 

of 24𝜇𝐴. Empty circles describe the heating direction while full circles describe the cooling direction.  

4.2.2 Coupled network behavior 

  Fig. 22 shows the 𝑅(𝑇) curves of the top and bottom network when they are coupled. 

 

Figure 22:  Resistance versus Temperature of the bottom (a) and the top (b) network for the cooling and heating 

cycles when they are coupled. Empty circles describe the heating direction while full circles describe the cooling 

direction. taken at different bias currents. 

 

a) - Bottom b) - Top 
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It is seen that both of the networks exhibit an abrupt transition and hysteretic behavior for 

currents above 20𝜇𝐴. 

Fig. 23 shows a comparison between the behavior of the coupled networks to the behavior 

of each network separately for current of 24𝜇𝐴. 

Figure 23: Normalized resistance versus temperature of the top (red and orange curves) and bottom (blue and 

green curves) network for a current of 24𝜇𝐴, measured while they are coupled (orange and green squares) and in 

isolation (red and blue circles). Empty symbols describe the heating direction and full symbols describe the 

cooling direction.  

 

Surprisingly, measuring the coupled networks shows an abrupt transition and hysteretic 

behavior with a shred 𝑇𝑐 which is determined by the network with the lower transition 

temperature, while measuring each network separately results in a continuous transition with a 

unique 𝑇𝑐. 
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4.2.3 Width of hysteresis 

Fig. 24 shows a comparison between the width of the hysteresis (𝛥𝑇ℎ𝑦𝑠 - Eq. 2) of the coupled 

networks versus that of the single network.  

Figure 24: The comparison of width of the hysteresis of the networks while they are coupled and in isolation, 

for the bottom network (a) and for the top network (b). data was extracted from figs 20 and 22.  

 

It is seen that while measured separately, each network needs more power than of the coupled 

case in order to exhibit a hysteretic behavior. In addition, the hysteresis width for the coupled 

networks is much wider for each applied power. 

 

 

 

 

 

 

 

 

 

 

 

 

a) - Bottom b) - Top 
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5 Summary and Discussion 

5.1 Summary of main results 

Below we summarize the main results described in the previous section. 

Single network 

● At low current the superconductor-insulator transition is rather broad. As the current is 

increased the transition becomes sharper. 

● For any chosen current the 𝑁𝑏 transition’s is much sharper than that of the 𝑎-𝐼𝑛𝑂. This 

can be explained by the fact that the disorder of 𝑎-𝐼𝑛𝑜 is larger, and hence has a wider 

spread of 𝐼𝑐 and 𝑇𝑐. 

● Above a certain current the 𝑅(𝑇) curves exhibit an abrupt transition and hysteretic 

behaviour. As the current is increased the width of the hysteresis becomes wider. 

● The substrate of the sample affects the results. For a better thermal conductive substrate, 

a larger power has to be applied in order to observe an abrupt transition. 

 

 Coupled networks 

● At low current in both networks the 𝑅(𝑇) curves exhibit broad superconductor-insulator 

transitions. As the current is increased the transition becomes sharper in both networks. 

● Above a certain current the networks exhibit an abrupt transition with a shared 𝑇𝑐 which 

is determined by the network with the lower 𝑇𝑐. 

● For a certain current (24𝜇𝐴 for the sample of Fig. 25), the coupled networks exhibit an 

abrupt transition and hysteretic behaviour, in contrast to the continuous, non hysteretic 

transition which is observed for each network when it is in isolation, for the same 

current. 

● For each chosen current, the width of the hysteresis on each coupled network is wider 

than the width of the hysteresis of the isolated network for the same current. 
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5.2 Model 

To reach a theoretical understanding of the phenomena observed in the experiments we 

collaborated with Prof. Shlomo Havlin’s group in order to develop a new iterative model based 

on the theory of interdependent networks that contains two different kinds of interactions: 

c. Connectivity interactions - current that flows between nodes. 

d. Dependency interactions - heat that propagates between dependent nodes. 

5.2.1 General idea of the model 

We start by considering the transition from a broad to an abrupt superconductor-insulator 

transition with increasing current. For a single network this can be explained in terms of a 

“runaway” process. When the network is initiated at low temperature, all the nodes are in the 

superconductor phase. During The network heating, the temperature exceeds 𝑇𝑐 for a few 

random nodes, thus turning them normal. This leads to redistribution of the current flow within 

the network, causing other nodes to switch to a normal metal phase. The process is repeated 

and eventually, it leads to an avalanche and an abrupt transition.  

The “runaway” process is indeed effective in explaining the results in a single network. 

However, we see similar effects in a coupled network where this process is not relevant. 

Therefore, we suggest a new, iterative model based on interdependent networks. 

We begin with analyzing the system at low temperature where all the nodes of both networks 

are in the superconductor phase. As the system is heated, some random nodes in at least one of 

the networks undergo a superconductor - metal phase transition, thus causing a dissipative 

current flow and heating. Due to thermal coupling, this local temperature increases and heats 

the superposed nodes in the other network, heating in turn an increasingly growing number of 

nodes. This feedback thermal process continues while developing a voltage across the network, 

leading to a cascade of failures and a first-order phase transition. 
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This process is schematically described in Fig. 25 

Figure 25:  Sketch of the heating process of the coupled networks. The red gradient demonstrates the disorder in 

each network and dark red sections are in the normal phase. The current that flows within the network describes 

the connectivity links.  The red beams between the networks describe the dependency links. 

 

Since this model can explain the results in two coupled networks, and since the results for a 

single network are similar, we suggest that this model can be considered as an alternative model 

for each individual network as well. When all the nodes of a single network are in the 

superconductor phase and the system is heated, some random nodes in the network undergo a 

superconductor - metal phase transition, thus causing a dissipative current flow and heating. 

Due to heat propagation within the network, the temperature across the network increases and 

heats other nodes, heating in turn an increasingly growing number of nodes. This feedback 

thermal process can lead to a cascade of failures and a first-order phase transition. 

 The process of heat propagation in a single network of our network is schematically 

described in Fig. 26 

Figure 26:  Sketch of the heating process of a single network. The red gradient demonstrates the disorder and 

dark red sections are nodes in a normal phase. 

 

If this model is relevant, the results depend on the substrate because it also carries heat. Indeed, 

we see in the experiment that for a better thermal conductivity substrate a larger power has to 

be applied in order to observe an abrupt transition (see Fig. 21). This can be explained by the 

fact that for a better thermal conductive substrate, more heat is dissipated inside the substrate 

instead of propagating within the network, thus, less dependency links exist in the network.  
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5.2.2 Theoretical analysis 

We model our network as a random array of Josephson Junctions. Where each network link is 

considered as a Josephson weak link. The model is iterative, each iteration in the simulation 

corresponds to change at the temperature of the sample in reality. After each iteration, 

Kirchhoff equations are resolved and the state of every junction in the network is reconsidered 

according to Josephson Junction characteristic as follows: 

       (3) 

        

 

Where 𝑉𝑖,𝑗 represents the potential differences between neighboring nodes and  𝐼𝑐
𝑖,𝑗(𝑇) the 

critical current of the junction that can be calculated from Eq. 4. 

𝐼𝑐
𝑖,𝑗(𝑇)  =  𝐼𝑐

𝑖,𝑗(0)(1 − 𝑇/𝑇𝑐
𝑖,𝑗)2     (4) 

The critical temperature of each junction, 𝑇𝑐
𝑖,𝑗

,  in both networks is drawn from a Gausian 

distribution (with the mean value taken as the bulk 𝑇𝑐) that characterizes the level of disorder 

in the network. The critical current of each junction at zero temperature, 𝐼𝑐
𝑖,𝑗(0),  is obtained 

from the Ambegaokar–Baratoff relation: 

   𝐼𝑐
𝑖,𝑗(0)𝑅0  =  𝜋𝛥(0)/2𝑒      (5) 

where 𝑅0 is the metal state resistance and 𝛥(0)  =  1.76𝐾𝐵𝑇𝑐 is the energy gap according to 

the BCS mean field formula. 

After considering the state of all the junction in both networks, we evaluate the 

temperature of each network by considering ohmic dissipation (𝑃 = 𝐼2𝑅) within and between 

the networks and by the relation described in Eq. 6.  

 

     (6) 

  

The coefficients 𝛼𝑖,𝑗 describe the heat conductance within and between the networks (A, B). 

We perform this analysis both for coupled networks and for a single network where the B 

components are taken to be zero. These iterations are continued until a full 𝑅(𝑇) curve is 

accomplished. 
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In order to estimate the heat conductance within a network (𝛼𝐴𝐴 = 𝛼𝐵𝐵) we use the following 

algorithm: 

1. Define the reference 𝑅(𝑇) curve as the minimal current curve. 

2. Look for the resistance of each 𝑅(𝑇) curve for a chosen temperature. 

3. Find the appropriate temperature for this resistance in the reference curve. 

4. Calculate the temperature difference 𝛥𝑇 =  𝑇𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑇𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒  for each curve. 

5. Plot 𝛥𝑇(𝑃) where 𝑃 is the power applied on the network. 

6. 𝛼𝐴𝐴 is estimated from the slope of 𝛥𝑇(𝑃).   

Fig 27. illustrate this process for a 𝑎-𝐼𝑛𝑂 network at 3𝐾. 

Figure 27: a) R(T) of an 𝑎-𝐼𝑛𝑜 network plotted for different currents. b) 𝛥𝑇 of each curve (color fit) compared 

to the reference curve. c) 𝛥𝑇 as a function of 𝑃. 

 

We find that the relevant heat conductance within our 𝑎-𝐼𝑛𝑂 network is 𝛼 ≈ 105[
𝐾

𝑊
]. However, 

the distance between superposed nodes is one order of magnitude smaller compared to the 

distance between adjacent nodes, thus,  𝛼𝐴𝐵 = 𝛼𝐴𝐵 ≈ 106[
𝐾

𝑊
]. 

a) b) 

c) 
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5.3 Comparison between experiment and theory 

5.3.1 Coupled networks 

Fig. 28 shows a comparison between the experiment and the simulation results for coupled 

networks. 

Figure 28: Normalized resistance versus temperature in experiment (a - taken from Fig. 23) and simulation (b) 

of the top (red curves) and bottom (blue curves) networks for a current of 24𝜇𝐴, measured while they are coupled 

(squares) and in isolation (circles). The bottom panels are phase diagram, 𝐼(𝑇), of both coupled networks based 

on experiment (c) and simulations (d) for weak coupling (low currents - not hysteretic) and strong coupling (high 

currents - hysteretic). red and orange curves describe the heating cycles, blue and purple curves describe the 

cooling cycles. Simulations Parameters: 𝐼1,𝑐(0)  = 58𝜇𝐴,𝐼2,𝑐(0)  = 54𝜇𝐴, 𝛼𝐴𝐴 = 𝛼𝐵𝐵 = 5 ∗ 105 [
𝐾

 𝑊
], 𝛼𝐴𝐵 =

𝛼𝐵𝐴 =  3 ∗ 106 [
𝐾

 𝑊
], 𝑅0 = 500𝛺. 
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It is seen (a, b) both in experiment and simulation that measuring the coupled networks for 

current of 24𝜇𝐴 shows an abrupt transition and hysteretic behaviour with a shred 𝑇𝑐, while 

measuring each network separately for the same current results in a continuous transition with 

a different 𝑇𝑐 In each network. The shared 𝑇𝑐  is determined by 𝑇𝑐 of the network with the lower 

transition temperature. This is explained by the fact that at this temperature, some nodes in that 

network undergo a superconductor-metal transition. These transitions drive the process of the 

interdependency between the networks and finally leads to cascade and an abrupt transition.  

In addition, it is seen (c, d) that for weak coupling (low currents) there is no hysteretic 

behavior for both networks and they behave like a single network with unique 𝑇𝑐. Above a 

certain current the networks are coupled with a shared 𝑇𝑐 while they exhibit a hysteretic 

behavior. 
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5.3.2 Single network 

Fig. 29 shows a comparison between the experiment and the simulation results for a single 

network. 

 

Figure 29: Normalized resistance versus temperature in experiment (a - taken from Fig. 19 b) and simulation (b) 

for different currents. Phase diagram, 𝐼(𝑇), based on experiment (c) and simulation (d). Blue and red curves 

describe cooling and heating cycles respectively. 𝐼 represents the superconductor phase, 𝐼𝐼𝐼 represents the normal 

phase and 𝐼𝐼 represent the hysteretic behavior, meaning that your phase is determined according to the cycle. 

Simulations Parameters: 𝐼𝑐(0) = 60𝜇𝐴, 𝛼 = 5 ∗ 105 [
𝑊

𝑚 ∗ 𝐾
]  and 𝑅0 = 500𝛺,  

 

It is seen (a, b) both in experiment and simulation that above a certain current, the network 

exhibits hysteretic behavior and an abrupt transition.  

In addition, it is seen (c, d) that for low currents there is no hysteretic behavior and above 

a certain current a new phase appears (𝐼𝐼 phase) while hosting hysteretic behaviour and abrupt 

transition. In this phase, the state of the network (superconductor or normal) is determined by 

the cycle of the measurement, superconductor for heating cycle and normal for the cooling 

cycle.   
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5.4 Conclusions and future plans 

The experiment, together with the theoretical model, show that the theory of interdependent 

networks can be applied in a real physical system i.e., interdependent superconducting 

networks. This sample is the first attempt to manifiestate and characterize the theory of 

interdependent networks in a real-world physical system. We believe that our experiment can 

also lead to new theoretical research avenues such as the application of the theory also in a 

single network and understanding the effect of disorder on the system (we have seen that the 

network with the lower transition temperature is the dominant for the model). On a more 

practical side, by grasping the underlying mechanisms of the propagation of avalanches, we 

have opened the road to engineer novel materials based on abrupt transitions, paving the way 

to the creation of new highly-sensitive sensors.  An example for such a sensor could be the 

single photon detector as mentioned in the Motivation section. 

This project focused on two coupled networks via heat layer, however, this will only be the 

first step. We plan to extend our study from two to more systems that include different types 

of interactions (for example, magnetic field). Building a physical multilayer system is indeed 

a fascinating perspective, which may potentially lead to the discovery of new physical 

properties so far overlooked, or to engineer new generations of complexity-based materials.  
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 תקציר 

עומדות בפני  ומלין עם רשתות אחרות ויחסי גלא מקיימות  ש  רק לעיתים נדירות, ניתן למצוא רשתות בטבע,  

  .נייהאחת על הש  יטריוויאללא  באופן    יעות ומשפ  יותר  ות גדול  ות בתוך מערכ  ביחד מופיעות  הן בדרך כלל    .עצמן

שפיע יכול להצומת ברשת אחת  רשתות שבהן  ,  רשתות מצומדות התיאוריה של  בנה של מציאות זו, ההלאור  

  נאספו הוכחות מרשימות יותר   [1] לאחר מאמר פורץ דרך בנושא זה   פותח.  ,אחרת ם אחרים ברשת  צמתיעל  

בולטת דוגמה    יחודיות הגורמות למעברים פתאומיים.מערכות של רשתות מצומדות מציגות תופעות ילכך ש

 . 2003יא הפסקת החשמל המפורסמת באיטליה בשנת לכך ה

על מערכת   מהמעולם לא יוש היאכבר למעלה מעשור,  נחקרת על רשתות מצומדות  שהתיאוריהלמרות 

על מנת לבצע זאת, צימדנו שתי רשתות    ת זאת.אשון לעשוהוא הניסיון הרהמחקר שלנו,  .קלית אמיתית פיזי

חשמלי חזק המציג מוליכות חום סבירה. בגלל אי הסדר, לכל צומת   ד מבוד   באמצעות   מוליכי על לא מסודרים 

,𝑇𝑐)  ברשת יש טמפרטורה קריטית משלו וזרם קריטי משלו 𝐼𝑐 )  , במצבם של צמתים ברשת. ים  אנו שולט  כך 

יצירתם של  הגורם לדבר  ,  נית זמ-ם בשתי הרשתות בוזר  ת עברה  באמצעות   בא לידי ביטויבין הרשתות  הצימוד  

 . מבוססי חום בין שתי הרשתות קשרים 

שתי הרשתות בו זמנית ושל כל מפרטורה של  ט   ביצענו מדידות של התנגדות אל מול  ,במהלך המחקר

ל  של התנגדות אל מו  העקומותש  יינות שקיבלנו היאצאות המענ אחת התו  .רשת בנפרד עבור זרמים שונים 

סדר  מ  ,חד מעבר פאזה  והיסטרטית    התנהגות מסוים הציגו    עבור זרם   שתי הרשתות המצומדות   שלרה  טמפרטו

פרטורה של כל רשת  לעומת זאת, העקומה של התנגדות אל מול טמ  ,תפת עם טמפרטורה קריטית משו  ,ראשון

עם   רציף  פאזה  מעבר  הציגה  הזרם  אותו  עבור  שונה.בנפרד  קריטית  הקריטית  הטמ  טמפרטורה  פרטורה 

 יותר.פרטורת המעבר הנמוכה המשותפת נקבעה על ידי הרשת עם טמ 

רשת המבוססת על  ת המחקר של פרופסור שלמה הבלין ופיתחנו תיאוריה  שיתפנו פעולה ביחד עם קבוצ

 . ונ ית ותוצא'וזפסון המסוגלת להסביר את אקראית של צמתי ג

 ור שלמה הבליןרופסשל פ  קבוצתוות של  ינו הניסיוניות ביחד עם תוצאות הסימולצישתוצאות בטוחים    ואנ 

כמו להוביל ליישומים טכנולוגיים חדישים    ות שיכול  ות מצומד   ות פיזיקלי  מערכות את הדרך להנדס    תסלולנה  

 . רגישים אולטרה אים למשל, גל
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