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Abstract

“In all chaos there is a cosmos, in all disorder a secret order.” (Carl Jung)

The nature of disordered metals and their temperature dependence is the main

subject addressed in this work, using theoretical, numerical and experimental

methods. Like many other systems in condensed matter physics, the problem

of electrons in disordered lattices is not yet completely understood. Due to the

complex nature of such systems, exact theoretical solutions cannot be applied and

statistical methods require extreme caution when used to describe all aspects of

the physics. Moreover, a growing number of experimental studies on different dis-

ordered systems and materials show non-trivial and novel phenomena, such as the

super-conductor to insulator transition [1, 2], super-insulator [3, 4], superradiance

[5], and electron-glass [6, 7].

Electron dynamics in disordered metals are very different from those of a perfect

metal. In these disordered systems, the electrons are localized in space, and their

dynamics is described by hopping between these localized states. Sensing the

electronic dynamics by transport (i.e. conductance measurements) is a common

method to examine the response of different systems to various external conditions,

and under the right conditions, it provides comprehensive information on the very

nature of the electron states in the system, and of the significance of the strength

of disorder, Coulomb interactions, temperature, etc.

In this dissertation, I study the temperature dependence of a variety of dis-

i



ordered systems using different techniques: numerically, by the Non-Equilibrium

Green’s Function method (NEGF); and experimentally, by measuring the conduc-

tance of thin metal films.

Unlike the common statement asserting that temperature affects the electronic

transport mainly by coupling to the lattice phonons, in the numerical section we

show that the electric conductance strongly depends on temperature, even in the

absence of phonons. This effect is attributed to the highly skewed distribution

of the transmission function in disordered systems. Moreover, the conductance

in disordered quantum systems turns out to be substantially different from the

conductance of normal (non-disordered) metals, where a significant part of the

electronic quantum states do not contribute to the conductance measurement.

In the experimental section we use the quench-condensation method to fab-

ricate and measure thin films of highly disordered metals at low temperatures.

These films turned out to be electron-glasses (EG), i.e. the interacting electrons

within the metal share features of glass, including a very slow relaxation of the

conductance after a thermal or electronic excitation, and a memory of the previous

environmental conditions. EG systems are believed to be independent of temper-

ature T , and therefore, are suggested as quantum-glass; i.e., the dynamics of the

localized electrons are ruled by quantum-tunneling, rather than thermal activation

by phonons. Nonetheless, we show that this phenomenon is true only for a limited

range of low temperatures. Above a certain point in temperature the relaxation

rates of the glass obey again the classical activation dependence. By analyzing the

experimental results, we show that the energy scale of the thermal activated glass

dynamics is characterized by a surprising parameter – the maximal temperature

the system was previously heated to.

The observations in both paths, theoretical and experimental, face similar phys-

ical puzzle, namely: how do temperature affect transport in non-equilibrium disor-

ii



dered metals? They do, however, examine different systems and employ different

methods, and thus answer this question from diverse aspects. In the first part of

this work, I provide an introduction to disordered systems in condensed matter

physics, as well as electronic transport and conduction of quantum electronic sys-

tems. The second part focuses on the calculation of transport in non-equilibrium

systems, including a detailed description of the NEGF method, its implementa-

tion, and its results on a variety of systems and conditions. In the third part,

I focus on the experimental work, including an introduction to the glass state

of matter, the electron glass systems and a review of the previous results in the

field. I then describe the experimental systems and techniques, and discuss this

research’s results and its contribution to the field.
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Part I

Introduction to

Transport in Disordered Systems
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Chapter 1

Theoretical Background

1.1 Anderson localization

In the absence of disorder, the quantum mechanical nature of electrons in periodic

lattices is described by the Bloch wave function

ψ(~r) = ei
~k~ru(~r), (1.1)

where ~r is the position vector in the metal, ~k is the wave vector, and u(~r) is a

function with periodicity of the lattice vectors ~R, i.e. u(~r+ ~R) = u(~r) (Fig. 1.1a).

This periodic solution of the Schrödinger equation means that the electrons are

extended, and their charge density, |ψ(~r)|2, is uniformly distributed in space.

However, if disorder is present in the metal, the solution of the quantum me-

chanical problem becomes very different from the Bloch function, and the wave

vector ~k is no longer a good quantum number. Anderson [8] showed that within

the limits of a strong disorder, all electronic states are bounded to certain locations

in the metal and decay exponentials around localization centers -

|ψi(~r)| ∝ exp

(
−|~r − ~ri|

ξ

)
, (1.2)

where ~ri is the localization center of ith eigenstate ψi(~r), and ξ is the scaling factor
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of the exponential decay, named the ’localization length’ (Fig. 1.1 b). A short

derivation of this behavior using the transfer matrix method may be found in Ref.

[9].

i

i

r

r

a

b

Extended

Localized

Figure 1.1: Illustration of extended (a) and localized (b) wave functions, ψi, as a
function of location in a disordered system, ~r (blue lines). In the localized regime,
the amplitude of ψi decays exponentially around the localization center (red line);
the strength of this decay is the localization length (green arrow) (see Eq. 1.2).

The transport of electrons through a homogeneous metal (i.e. with no disorder)

is a direct result of the Bloch function (Eq. 1.1), and the quantum current operator

reduces to

j =
~

2mi
(ψ∗∇ψ − ψ∇∗ψ) =

~k
m
, (1.3)

where i is the imaginary unit and m is electron mass.

In disordered quantum systems, however, this treatment leads to an exponen-

tially small current. This has led Mott [10, 11] to suggest a different mechanism

of transport in disordered systems, called Variable Range Hopping (VRH).
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1.2 Variable range hopping

Transport of electrons in localized systems generally involves incoherent processes,

particularly interactions between electrons and phonons. In the ground state, all

electrons are bound and do not contribute to transport, hence, one might expect

that conductivity would be enhanced at higher temperatures due to the influence

of phonons on the electrons, similar to intrinsic insulators and semiconductors.

This temperature-driven conductance is the basis of VRH theory.

E

e e e

e

e

r

e

e
e

e

e

e
𝜀𝐹

e

Figure 1.2: Illustration of the variable range hopping process. The wave func-
tions (green lines) are localized in space (~r). The lateral positions of the electronic
states are represented by short black lines with association to their eigen-energies.
The hopping process of electrons (cyan circles) may occur at low temperatures via
long range processes to states with similar energy (orange arrows), and at high
temperatures by short range processes to adjacent states with diverse energies (red
arrows).

Within the limits of a highly disordered system, where the localization length

is much shorter than system length, each electronic state is bound to a small

region in space and has a different energy level. In the 1D case, we can describe

this electronic system by the E(~r) sketch in Fig. 1.2. In order to contribute to

conduction, an electron must hop between the localized states. The rate of this

hopping process, Γ, depends exponentially both on the spatial distance and on the
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difference between the energies of the states, using the following relation [12]:

Γij = γ0 exp

(
−2 |ri − rj|

ξ

)
· exp

(
|Ei − Ej|
kBT

)
, (1.4)

where ri/j and Ei/j are the localization center and the energy of state i/j, respec-

tively. γ0 is a proportional constant that is governed by the material properties.

The spatial part of Eq. 1.4 is a consequence of the overlap integral between the

two states ∫ ∞
−∞

ψi(~r)ψj(~r)d~r, (1.5)

while the energy part is the activation probability of an electron by a phonon

with corresponding energy at a given temperature. This relation sets an effective

distance between adjacent localized sites in the d + 1 dimensions of space and

energy (d being the dimensionality of the system). This effective distance varies

with temperature: At relatively high temperatures, the phononic distribution is

wider, therefore the hopping rate to spatially closer sites is high even if the energy

mismatch is great; on the other hand, at low temperatures, the electrons prefer

farther sites, but with closer energy values.

The relation of the average spatial distance between two neighboring sites, ∆r,

and their mean energy difference, ∆E, is given by the density of states. Assuming

constant density of states, N (E) = N0, the energy difference between adjacent

states can be presented by

∆E =
1

N0(∆r)d
, (1.6)

which leads to the following hopping rate

Γ = γ0 exp

(
−2∆r

ξ
− 1

kBT

1

N · (∆r)d

)
. (1.7)

As a result of the exponential nature of Eq. 1.7, it can also be assumed that

most of the electronic transport will occur between nearest neighboring sites in
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the d+ 1 dimensions. One can thus discover the mean spatial distance to this site

∆r by demanding a maximum in Γ

∂Γ

∂∆r
= Γ ·

(
−2

ξ
+

1

kBT

d

N · (∆r)d+1

)
= 0, (1.8)

and find that

∆r =

(
ξd

2NkBT

) 1
d+1

. (1.9)

By placing ∆r back into Γ, we derive the temperature dependence of the hop-

ping rate

Γ = γ0 exp

[
−
(
T0

T

) 1
d+1

]
, (1.10)

where

T0 =
2d

ξdN0kB
. (1.11)

The conductance between adjacent states, Gij, is proportional to the rate at

which electrons hop between the sites, Γij. Therefore, Eqs. 1.10-1.11 define a

fractional power temperature dependence in the exponential for transport in the

disordered system. This exponential dependence differs from the intrinsic band gap

insulator temperature dependence, in which conductance is related directly to the

probability of an electron to absorb phonon and to be excited into the conductance

band, i.e. G ∝ exp (−∆/kBT ), where ∆ is the band gap amplitude. Hence,

if T0 is large enough, one may easily distinguish between the two mechanisms

experimentally.

1.3 Percolation network

While the VRH method considers only a single hopping process to obtain conduc-

tance behavior, a model of transport in larger systems was developed by Miller
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and Abrahams [12] and further expanded by Ambegauker, Halperin and Langer

[13]. In this framework, the disordered system is described as a network of resistors

between localized states. The resistance values of these resistors are determined

by the spacial and energetic differences between the states, similar to the premise

of the VRH method, and therefore have an exponential distribution. This method

allows the definition of a critical resistance value, Rc, by connecting the resistors

one by one from the lowest resistance to the higher resistance ones. According to

this process, Rc is the minimal resistance value which allows a direct percolative

flow of electrons between sample edges. Due to the exponential distribution of

the resistors, all higher resistors R � Rc are considered as an effectively infinite

resistance, and all lower resistors R � Rc as an electric shortcut with zero resis-

tance; hence, the overall conductivity of the whole network is defined as Rc. The

behavior of Rc with temperature is directly related to the VRH analysis. In other

words, the conductivity of the entire disordered system would resemble Eq. 1.10:

G = G0e
−(T0

T )
1
d+1

, (1.12)

where G0 is the saturated conductance at high T .

This percolation network analysis provides a more qualitative understanding

of electronic transport in disordered media, as most of the electronic current is

concentrated in a diluted percolation network, and all other areas are detached

and do not contribute to electronic transport (Fig. 1.3). The characteristic length

scale of the percolation network, the percolation length, is the average distance

between critical resistors, and defines the minimal size of the percolation system.

In samples with high levels of disorder, the percolation length can be as large

as a few tens of microns, whereas all other length scales in the metallic system

are within the range of a few nanometers. This effect ascribes such systems as

mesoscopic physics (meso = intermediate), i.e. it is neither microscopic nor

macroscopic, but has the characteristics of both scales.
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Due to the exponential nature of the critical resistors, the percolation network

is highly sensitive to changes in external parameters. This gives rise to large fluc-

tuations of conductance with changes in temperature, bias voltage, gate voltage,

etc. In the case of highly disordered systems, the percolation length is large enough

and the mesoscopic fluctuations are observable even in millimetric-in-size samples.

DrainSource

Figure 1.3: Illustration of the percolation network in a 2D system. The blue circles
are the localization centers, connected by ”resistors” with various conductivities
(black curved lines). The critical resistivity, Rc, can be found by hypothetically
appending resistors between the localization sites from most conductive to most
resistive; in this method, Rc (red curved lines) is on the scale of the resistors that
connect the percolation network from between the contacts (yellow rectangles). The
percolation length is the mean distance between two such resistors (green arrows).

1.4 The Coulomb gap

The energy value of each localized site is mainly determined by the disorder po-

tential of the atoms in the metal. Nevertheless, Efros and Shklovskii [14] showed

that the energies of states around Fermi energy (εF ) gain an additional term due

to Coulomb interactions between electrons. This phenomenon can be clarified by
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the following argument: while a system is in its ground state, all sites with energy

below εF are occupied, and all sites with energy greater than εF are empty. Adding

an additional electron to the system will result in an increase of Ej, the lowest

energy state above εF . However, if instead of adding a particle to the system, an

electron from site i below εF is excited into site j, the overall change in energy

would be:

∆Eij = Ei − Ej −
e2

∆rij
, (1.13)

where the additional subtracted term originates from the change in the Coulomb

interaction due to moving of electron from site j to site i.

According to the definition of the Fermi energy, ∆Eij should remain positive to

maintain the system in its ground state, we can conclude that the states must be

far enough from each other to prevent such a process, which results in an energy

gap around εF .

Quantitatively, the DOS relates the mean spatial distance ∆r to the mean

energy differences ∆E, as mentioned in Eq. 1.6. Therefore, the level spacing

between states i and j should be as follows

∆Eij = Ei − Ej − e2(N0∆E)1/d. (1.14)

If the energy difference Ei − Ej is small enough, the right-hand side of Eq.

1.14 is negative, but ∆Eij is defined as the absolute value. The solution to this

contradiction is the depletion of states from Fermi energy, which changes the DOS

to the following form

N (E) =
Ñ
e2d

(E − εF )d−1 , (1.15)

where Ñ is a scaling factor. This means that at E = εF , the DOS is equal

zero, forming a ’soft’ gap around the Fermi energy, which has been termed as the

Coulomb gap.
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By combining the DOS of the Coulomb gap (Eq. 1.15) with VRH theory (Eq.

1.4), Efros and Shklovskii [14] show that the temperature dependence power α

becomes independent of the dimensionality d

G(T ) = G0 exp

(
−T0

T

) 1
2

, (1.16)

where

T̃0 =
8e2

ÑkBξ
. (1.17)

The above two temperature dependencies have become the hallmark of hopping

systems, as demonstrated in Fig. 1.4 [15]. At low enough temperatures, the

Coulomb interactions form a Coulomb gap, and conductance is as presented in

Eq. 1.16, whereas at higher temperatures, the thermal energy washes out the

Coulomb gap, and conductance follows Eq. 1.12.

Figure 1.4: Resistivity as function of temperature for three dimensional ion-
implanted Si:P,B samples. At relatively high temperatures (left frame) the re-
sistivity is successfully scaled with T−α where α = 1/(d + 1) , while at lower tem-
peratures (right frame) the results are better fitted with α = 1/2. (Zhang, 1993
[15])
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1.5 Scaling theory of localization

As was described above, in the presence of strong disorder, the wave functions of

electrons are localized in space and conductance decreases exponentially with the

system size, L. This behavior is true in one-dimensional (1D), two-dimensional

(2D) and three-dimensional (3D) systems. However, if the level of disorder is not

large enough, a fundamental difference is found between the various dimensions.

A highly accredited paper by a group of researchers, known as the “Gang of Four”

(Abrahams, Anderson, Licciardello, and Ramakrishnan) [16], had shown that a

scaling relation between conductance G and system length L can be described by

a single parameter β, defined as -

β ≡ log(G)

log(L)
. (1.18)

In the case of a strong enough disorder, conduction decreases exponentially

when enlarging the system, G ∝ e−L/ξ; hence, β is negative in this range and

depends linearly on ξ for every dimension.

On the other hand, for weak disorder, the system is Ohmic and has constant

conductivity. In the 1D case, enlarging the system length L will result in linearly

lower conductance (β < 0); in 2D, enlarging L on both axes by the same amount

will not change G (β = 0), and in the cubic 3D case, G would even increase with

L (β > 0). The overall dependence is depicted in Fig. 1.5.

This demonstraits a substantially different behavior of the disorder in different

dimensions. While a 1D system is localized at any value of disorder, in 3D this is

true only for a strong enough disorder. A transition from a localized to extended

case occurs when changing the disorder level of the system, known as the “Metal-

insulator transition”. The 2D case is marginal, and may therefore be affected

by secondary effects, such as temperature, interactions, long range periodicity or

11



Figure 1.5: The scaling parameter of localization β, as a function of the logarithm
of differential conductance, ln(g). β < 0 means exponentially lower conductance
when enlarging the system size L in every dimension, indicating a localized regime.
(Abrahams et al., 1979 [16])

external fields [17].
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The theory of transport through disordered systems presented in this chapter

is based on a set of premises on the microscopical behavior of electrons in mat-

ter, such as equilibrium conditions, effective single particle picture, a well-defined

localization length, and the importance of electron-phonon interactions.

Furthermore, solving the full quantum mechanical equations of electronic levels

and conductance is usually impossible due to the complexity of the macroscopical

problem. However, in some cases, more detailed quantum considerations are im-

portant to comprehend the very nature of electronic transport, and must be taken

into account.

In the following parts, I present two such systems, namely: the elastic trans-

port of non-interacting electrons (Part II), and electron glass (Part III). The two

subjects are different in many aspects, yet both show a non-trivial behavior of

electronic transport in the presence of temperature, due to quantum mechanical

nature of the system.
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Part II

Conductance in Quantum

Systems:

Theoretical and Numerical Study
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Chapter 2

Theoretical Study: Introduction

2.1 The Anderson Hamiltonian

A common way to present electron behavior in disordered electronic systems is via

the tight-binding (TB) model, based on a matrix representation of the Hamiltonian

and assuming a discrete form of the Schrödinger equation. This method assumes

that the electronic wave functions of the atom are the convenient basis from which

to approximate the wave functions of the whole system. Therefore, the basis for

the electrons in the system can be treated as discrete in space, located at the exact

locations of the lattice points of the periodic lattice.

Starting with the quantum Hamiltonian operator (in the 1D case) -

Ĥ = − ~2

2m

d2

dx2
+ U(x), (2.1)

we can rewrite the second derivative in a discrete formulation

dψj
dx
→ 1

a
(ψj+1 − ψj) , (2.2)

d2ψj
dx2

→ 1

a2
(ψj+1 − 2ψj + ψj−1) , (2.3)

where ψj is the electronic wave function in the jth atom, and a is the lattice
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constant.

Hence, operating the Hamiltonian on ψj will result in -

Ĥψj = (εj + 2t)ψj − tψj+1 − tψj−1, (2.4)

where εj are the on-site energies of the atoms and t is the energy scale of the

hopping element between adjacent atoms,

t ≡ ~2

2ma2
. (2.5)

In this discrete representation, Ĥ may be presented by the following matrix -

Ĥ =


ε1 + 2t −t 0 0

−t ε2 + 2t −t 0

0 −t . . .
...

0 0 . . . εL + 2t

 , (2.6)

which its eigenvectors and eigenvalues are the electronic eigen-states and eigen-

energies, respectively.

One may represent disorder in the system by assuming a random distribution

of the on-site energies εi. The eigen-states vectors of Ĥ will not follow the Bloch

form, but will exhibit localized behavior (Eq. 1.2). This representation of the

Hamiltonian, termed the Anderson Hamiltonian [8], assumes that all atoms are in

their crystalline locations in space and therefore all hopping terms t are identical,

while each atom has a random on-site energy 1.

Under the assumptions of the TB model, Eq. 2.4-2.6 may also be formulated

1A similar approach could be to assume the opposite, i.e. that the atomic levels are identical,
εj = ε0, and the hopping terms, tij , are randomized. Nevertheless, the resulting behavior of the
eigen-states was shown to be similar [18].
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in the second quantization form -

Ĥ =
∑
j

(εj + 2t) ĉ†j ĉj − tĉ
†
j ĉj+1 − tĉ†j+1ĉj, (2.7)

where ĉ†j and ĉj are the creation and annihilation operators of electrons in site j,

respectively.
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Figure 2.1: Representative electron density as a function of location in a 1D array
with a length of L = 500, calculated by the 250th eigen-vector of the Anderson
Hamiltonian. In agreement with Eq. 2.8, different disorder levels W result in
different localization lengths: W = 1 leads to ξ ≈ 105, W = 2 to ξ ≈ 26, and
W = 5 to ξ ≈ 4 (see text).

As mentioned earlier, the electronic localized wave-functions are defined by

localization length, ξ, which is equal to the length at which they decay to e−1

of their maximal value. As demonstrated in Fig. 2.1, in a case where εj are

uniformly distributed between −W/2 and W/2, ξ was shown to be approximated

by the following relation [19]:

ξ ≈ 105t2

W 2
. (2.8)

Hence, W represents the disorder strength in the system.
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2.2 Perfect conductance

A common way to evaluate conductance through a quantum system is by the

transmission function, which is basically the probability of an electron with energy

E to cross the system from end to end. This method assumes single-electron (i.e.

non-interacting) picture, as well as electronic equilibrium.

In a perfect 1D metallic wire, the transmission probability equals one for all

energy values. The amount of current generated by a single electron with energy

E is therefore −eν(E), where e is the electron charge and ν(E) is the electron

velocity. However, in order to have a current flow through a system, one should

apply a voltage, which results in a difference in the chemical potential at the source

and drain ends, µS and µD. At zero temperature, only energy levels associated

to an occupied electronic state in the source lead, and to an empty state in the

drain lead, will contribute to the total current. The number of such levels is equal

to N · (µS − µD), where N is the density of states in the system. Thus, the total

current equals -

Iperfect = −eνN · (µS − µD) = −eνN · eVSD. (2.9)

Both the electron velocity and the density of states are derivatives of the elec-

tronic dispersion relation (written here for the 1D case) -

ν = ~
∂E

∂k
, (2.10)

N1D =
1

π~2

(
∂E

∂k

)−1

, (2.11)

which sets a simple relation between them:

N =
2

hv
, (2.12)

18



and therefore a universal quantized conductance value

Gperfect =
I

VSD
=

2e2

h
. (2.13)

This conductance value, which equals 7.75 · 10−5 Ohm−1, is the conductance of

a single channel in the metal, or equivalently, of a quantum point contact [20, 21].

In the case of finite temperature, however, the current calculation (Eq. 2.9)

requires an additional integration over all energies, as the step distribution of the

level occupations in the leads are replaced with Fermi distributions

f(S/D) =
1

exp
(
E−µS/D
kBT

)
+ 1

. (2.14)

i.e. the probabilities to find an electron with energy E in the source (S) and

drain (D) lead, respectively. Nevertheless, it is easy to show that even at finite

temperature the overall integration on the fS − fD remains equal to the biased

voltage:

Iperfect =
2e2

h

∫ ∞
−∞

(fS − fD) dE =
2e2

h
· VSD. (2.15)

2.3 Landauer-Buttiker formalism

In general, the transmission function is an N ×N matrix, where Tij(E) represents

the probability of an electron with energy E to be transferred from site i to site j.

Hence, the value TSD(E) represents the transmission probability from the source

lead (S) to the drain lead (D) through the entire wire.

In the case of a non-perfect metal, conductance electrons can be either trans-

mitted through the 1D system or reflected backwards, and therefore TSD(E) ≤ 1.

As a result, the conductance in the disordered wire is also lower than the perfect
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conductance (Eq. 2.13) -

G =
I

VSD
=

2e2

VSD · h

∫ ∞
−∞
TSD(E) (fS − fD) dE, (2.16)

where fS and fD comprise the dependence on the source-drain voltage VSD, tem-

perature T , and chemical potential µ.

This equation, known as the Landauer-Buttiker formalism, provides a simple

yet useful method of calculating conductivity in quantum systems. An illustration

of the current flow in a localized system is presented in Fig. 2.2, showing Mott’s

picture of localization and the role of the leads’ populations (see also Fig. 5.1

further on).
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Space

𝒆𝑽𝑺𝑫

𝑓𝑆 𝐸 𝑓𝐷 𝐸

Sample

T𝑺𝑫
10.10.010.001

a b

Figure 2.2: Illustration of the Landauer-Buttiker method of current calculation. a:
The sample eigen-states (purple) are presented in Mott’s picture at their localized
positions and with their eigen-energies. When biased voltage is applied between
the source and drain leads (yellow), their electrochemical potentials change, and
electrons can flow from the occupied states in the source to the empty states in the
drain. b: The system transmission, that is, the probability of available electrons to
flow through the 1D sample. In the localized regime, TSD has sharp resonances on
the spectral lines, which are associated with the presence of an electronic state in
the sample, and exponentially lower values between them.

However, this method assumes that the transmission function is not affected by
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the connection to the leads, and does not take into account interactions between

electrons or between electrons to phonons. Furthermore, the transmission function

also does not consider non-equilibrium situations, such as strong bias voltages and

non-uniform temperatures. In order to consider the above phenomena one should

employ a more precise method for the calculation of the conductance. Here, we

resort to the Non-Equilibrium Green’s Function method (NEGF).

2.4 Non-Equilibrium Green’s Function

The NEGF method2, known also as the Kubo formalism [22], uses a generalized

method to calculate conductivity in quantum systems based on Green’s function

method within the limit of linear response (i.e. small VSD). As we shall see shortly,

this method inherently enables the inclusion of interactions and non-equilibrium

effects.

The Green’s function is the response of a field, described by a differential

equation, to an excitation from a delta-function source.

Considering the time independent Schrödinger equation -

[
Ĥ − EÎ

]
ψ = 0, (2.17)

where Ĥ is the Anderson Hamiltonian matrix, Î is the identity matrix and ψ is

the wave function. The associated Green’s function Ĝ0 should solve -

[
Ĥ − EÎ

]
Ĝ0(E) = δi, (2.18)

2Here we adopt the notation presented in a book by Supriyo Datta ”Electronic Transport in
Mesoscopic Systems” [23].
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or equivalently, in the TB representation -

Ĝ0 =
[
EÎ − Ĥ

]−1

. (2.19)

In this framework, the Green’s function element G0
ij is the wave function am-

plitude at site j due to the existence of an electron in site i. Therefore, Green’s

function is also named ‘propagator’, since it represents the probability amplitude

of the electron’s to propagate in space (and time).

Taking into account the time-dependent Schrödinger equation leads to a differ-

ent formulation of the advanced Green’s function, GA, and the retarded Green’s

function, GR:

ĜA
ij =

[
EÎ − Ĥ − iηÎ

]−1

, (2.20)

ĜR
ij =

[
EÎ − Ĥ + iηÎ

]−1

, (2.21)

where η is an infinitesimal small positive number. GA
ij and GRij correspond to

electron propagation from i to j or vice versa, respectively. The two matrices are

the Hermitian conjugate of each other.

In order to calculate the conductance of a wire using Green’s function, one

should apply more explicit boundary conditions of the source and drain leads.

This can be done by writing the full Green’s function of the wire-leads system.

The Hamiltonian of the wire, Ĥw, is the Anderson Hamiltonian (Eq.2.7)

Ĥw =
L∑
j=1

εj ĉ
†
j ĉj −

(
t

L−1∑
j=1

ĉ†j ĉj+1 + h.c.,

)
, (2.22)
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while the two leads are represented by semi-infinite homogeneous chains

ĤS/D = −t
∞∑
j′=1

ĉ
(S/D)†
j′ ĉ

(S/D)
j′+1 + h.c., (2.23)

where HS/D is the source/drain Hamiltonian, ĉ
(S/D)†
j′ and ĉ

(S/D)
j′ are the single-

particle creation and annihilation operators of the source/drain lead, respectively,

and j′ is the site index in the leads.

The leads are coupled to the wire by -

Ĥw,S/D = −tS/Dĉ(S/D)†
1/L ĉ1/L + h.c., (2.24)

where tS/D is the coupling amplitudes between the source/drain lead and the wire.

Thus, the complete Hamiltonian of the system composed of the wire and leads is:

Ĥ = Ĥw + ĤS + ĤD + Ĥw,S + Ĥw,D. (2.25)

2.5 Leads’ self-energy

To proceed, we express Green’s function Ĝ by its components - the wire (Ĝw) and

the left (ĜS) and right (ĜD) leads. The overall Green’s functions can be written

in the following form:

Ĝ =

 ĜS/D ĜS/D,w

Ĝw,S/D Ĝw

 =

 [
(E ± iη) Î − ĤS/D

]
τ̂S/D

τ̂ †S/D

[
EÎ − Ĥw

]
−1

, (2.26)
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where the matrices τ̂S/D represent the connection between the site inside the wire

to the source/drain leads. Multiplying both sides by the inverse right-hand matrix

results in two independent equations for Ĝw:

τ̂ †S/DĜS/D,w +
[
EÎ − Ĥw

]
Ĝw = Î , (2.27)

[
(E ± iη) Î − ĤS/D

]
ĜS/D,w + τ̂S/DĜw = 0. (2.28)

Combining the two equations and taking into account both leads, one gets

Ĝw =
[
EÎ − Ĥw − Σ̂

]−1

, (2.29)

where the total self-energy is equal to Σ̂ = Σ̂S + Σ̂D and Σ̂S/D is given by -

Σ̂S/D = τ̂ †S/D

[
(E ± iη) Î − ĤS/D

]−1

τ̂S/D, (2.30)

where +iη and −iη refer to Σ̂R
D/F and Σ̂A

S/D, respectively.

In the case of a 1D wire, τ̂S has only one non-zero term, as the wire-lead contact

is only through the first element. As a result, the only relevant element in the left

lead Green’s function ĜS is the (1, 1) element. For a semi-infinite homogeneous

lead, it can be calculated analytically3,

ĜS,(1,1) =
[
(E ± iη) Î − ĤS

]−1

(1,1)
= −1

t
e±ika, (2.31)

where a is the lattice constant and k is the wave number of the electron, which

follows the tight-binding dispersion relation

E = −2t cos(ka). (2.32)

3See Exercise 3.3 in Ref. [23].
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Consequently, the self-energy of the source lead also has a single non-zero term,

which is equal to

Σ̂S(1, 1) = t2S

(
−1

t
e±ika

)
. (2.33)

In a similar way, the single non-zero term of the drain lead’s self-energy,

ΣD(L,L), is equal to

Σ̂D(L,L) = t2D

(
−1

t
e±ika

)
.

2.6 Transmission from Green’s function

Following Ref. [23], it is shown that transmission through the wire is related to

Ĝ
R/A
w and to the self-energy Σ̂

R/A
S/D by -

TSD = Tr
[
Γ̂SĜ

R
wΓ̂DĜ

A
w

]
, (2.34)

where Γ̂S/D is the scattering rate from and into the wire -

Γ̂S/D = i
[
Σ̂R
S/D − Σ̂A

S/D

]
= −2 · Im

(
Σ̂R
S/D

)
. (2.35)

Writing Eqs. 2.34-2.35 in a more explicit form, and considering the single

non-zero elements of Σ̂R
S and Σ̂R

D, becomes -

TSD = Tr
[
4 · Im

(
Σ̂R
S

)
· ĜR

w · Im
(

Σ̂R
D

)
· ĜA

w

]
=

4 · t
2
St

2
D

t
· Im

(
eika
)
· ĜR

w(1, L)ĜA
w(1, L). (2.36)
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This results in a simple relation between the transmission function and the

(1, L) element of Green’s function of the wire:

TSD =

(
tStD
t

)2

· (~ν)2 ·
∣∣∣ĜR

w(1, L)
∣∣∣2 , (2.37)

where ν is the electrons’ velocity in the leads -

~ν =
∂E

∂k
= 2at · sin(ka). (2.38)

2.7 Conductance from Green’s function

Similar to the Landauer-Buttiker method, for the calculation of the total current

through the system, one should take into account the electronic population in the

leads and applied voltage. Assuming that the leads are in thermal equilibrium

at temperature T , the probability of finding an electron with energy E in the

source/drain lead is given by the Fermi distribution fS/D. Hence, the current also

depends on the electro-chemical potential in the leads µS/D, with a voltage drop

VSD between them -

µD = µS − eVSD. (2.39)

In order to calculate the current through the system using the NEGF method,

we have to define the in-scattering and out-scattering functions, which represent

the rate at which electrons enter and escape the wire at energy E:

Σ̂in
S/D(E) = fS/DΓ̂S/D, (2.40)

Σ̂out
S/D(E) = (1− fS/D)Γ̂S/D, (2.41)
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In addition, we must define the correlation functions that describe the occu-

pation of electrons (n) and holes (p) within the wire, Ĝn and Ĝp. To find the

correlation functions, we utilize one of the main results of the NEGF method, the

kinetic equation4:

Ĝn/p = GRΣ̂in/outGA, (2.42)

where

Σ̂in/out = Σ̂
in/out
S + Σ̂

in/out
D . (2.43)

Using these definitions, one can derive that current density in the wire is equal

to -

iS/D(E) =
e

h
Tr
(

Σ̂in
S/DG

p − Σ̂out
S/DG

n
)
. (2.44)

where the current is proportional to the rate at which the incident electron succeeds

in finding an empty state in the wire, Σin
S/DG

p, minus the rate at which electrons

succeed in leaving the wire, Σ̂out
S/DG

n.

In a case where the temperature in both leads is equal and there are no incoher-

ent effects (such as electron-electron or electron-phonon interactions) the current

density in Eq. 2.44 can be represented by a transmission function, TSD, multiplied

by Fermi distributions, similar to the Landauer-Buttiker formalism -

I =

∫
iS/D(E)dE =

∫
2e2

h
TSD(E) [fS (E, µS, T ))− fD (E, µD, T )] dE. (2.45)

This coherent current and associate conductance G = I/VSD, as derived above,

are an exact result that arises from the quantum mechanical considerations in the

wire, by assuming only the tight-binding model the semi-infinite leads. However, in

the non-equilibrium case, such as when the temperature is unequal in the leads or

when large source-drain voltage exist, or alternativel, in the presence of interactions

- both Σin/out and ΣR/A become dependent on other parameters, and one cannot

4See Sections 8.3-8.6 in [23].
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reduce Eq. 2.44 to the above simple form. Hence, Eqs. 2.40-2.44 must be solved

explicitly.

Even though the above method’s result was a relatively simple calculation for

the 1D non-interacting case, in Chapters 4 and 5, we demonstrate that in the

disordered case, the coherent conductance, calculated numerically by the NEGF

method, shows both an unexpected temperature dependence even without consid-

ering phonons, and a surprising anomaly of modes that could considerably affect

the experimental conductance measurements in such systems.

2.8 Density of states calculation

The NEGF method allows the calculation of the electronic density in space as well

as the DOS in energy, using the local density of states function (LDOS). As one

may expect, for an isolated wire whose Hamiltonian Hw is given by Eq. 2.7, LDOS

is equal to a set of Dirac delta functions -

ρ (j, E) =
∑
i

|ψi(j)|2 δ(E − Ei). (2.46)

However, as soon as the wire is connected to leads, the delta functions are

broadened, the system becomes non-Hermitian and the wave vectors ψi(j) cannot

be extracted directly from Ĥw. In this case, LDOS is expressed via the spectral

function, defined as5:

Â = i
[
ĜR − ĜA

]
= −2 · Im(ĜR). (2.47)

The diagonal elements of Â represent the LDOS, ρ (j, E), while its trace is the

5See pages 149-155 in [23].
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DOS -

N (E) =
1

2π
TrÂ (2.48)

As noted above, ĜR represents the the probability of an electron to be trans-

ferred from one state to another. In a like manner, the imaginary part of ĜR is

associated with the probability of an electron to be measured at a specific point,

a factor directly related to the electronic density.

2.9 Characteristic results of transmission and DOS

in 1D systems

In a perfect wire (i.e. in the absence of disorder) and with perfect connections to

leads (tS/D=1), one may expect a perfect transmission for every energy E. This is

indeed the case within the range of the tight binding dispersion bandwidth [0, 4t]

(see Eq. 2.32), as depicted in Fig. 2.3 (red line).

Naturally, for a disconnected wire there is no transmission. A weakly connected

wire (tS/D � 1), however, results in large peaks in the transmission function (blue

line in Fig. 2.3), similar to an optical cavity. The locations of these peaks in

E are associated with the presence of electronic eigen-states with similar eigen

energies, as can be seen by comparing these to the density of states N (E) plot.

Additionally, as is also seen from the plot, the DOS is higher at the edges of the

energy band. This result is in agreement with the theoretical derivation of DOS

in 1D systems -

N (E) =
1

2π

1√
t · E

, (2.49)

where as was derived earlier, t = ~2/2ma2.

Equivalently, adding even a small degree of disorder to a perfect-coupled system
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Figure 2.3: Transmission function (upper panel) and DOS (lower panel) of non-
disordered wire (W = 0), with L = 25 and perfect connections to the leads tS =
tD = 1 (blue lines), as well as with small connection tS = tD = 0.1 (see text).

results in fluctuations in transmission (Fig. 2.4). The inhomogeneity of the atomic

potential is separating regions in the wire, and the result is multiple semi-isolated

‘cavities’ which generate these random maxima. As W increases, the localization

length ξ eventually becomes shorter than the system length L, and the system is

localized. In this case, the average value of the transmission has an exponential

dependence on the ratio ξ/L -

〈TSD〉 ∝ exp

(
− L

2ξ

)
. (2.50)

Moreover, as we shall see in the next chapters, in the presence of disorder, the

system shows several non-trivial phenomena, such as the breaking of the one-to-

one correlation between energy levels and transmission resonances, and a surprising

temperature dependence.
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Figure 2.4: Transmission function (upper panel) and DOS (lower panel) of dis-
ordered wire with W = 0.5 (purple), W = 1 (orange) and W = 0.5 (green), with
L = 25 and perfect connections to the leads tS = tD = 1 (see text).
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Chapter 3

Numerical Methods

As result of the NEGF method presented in Chapter 2, the calculation of quantum

system conductance involves the inversion of L× L complex matrices (Eq. 2.29),

and overall integration of relevant energies (Eq. 2.45). In this chapter, these

issues are discussed from a numerical point of view. A sample of MATLAB code

for the calculation of conductance in a typical disordered system is presented in

the appendix.

3.1 Inversion of Green’s function matrices

The Green’s function calculation of a wire of length L requires the inversion of the

matrix
[
EÎ − Ĥ − Σ̂

]
, where E is the electron energy, Î is the identity matrix, Ĥ

is the Anderson Hamiltonian, and Σ̂ is self-energy. Using the LU decomposition

method, the inversion of an L × L matrix requires up to 2L3/3 operations. In

addition, each inversion gives a single energy value of the transmission function

T (E), as the conductance is a result of transport of electrons with all possible

energies (or at least within the TB energy band). These two requirements limit

the wire length to about 1000 sites for considerable computational time (hours or

a few days).
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However, in following with Eq. 2.25, the Hamiltonian that represents the 1D

wire is a tridiagonal matrix, as the only allowed hopping process occurs between

neighboring sites. The latter part in Ĝ, the self-energy term, has only two non-zero

elements that are also on the diagonal, as derived in Sec. 2.5. Thus, the inversion

is applied on sparse matrices that have a tridiagonal form, i.e. all elements are

zero except for the matrix diagonal and the two adjacent off-diagonal rows.

Inversion and diagonalization of sparse matrices are less complex, but a differ-

ent method must be derived for each type of matrix. Here, we use a method that

was developed by Usmani [24, 25].

For a given L× L tridiagonal matrix of the form -

M̂ =



a1 b1

c1 a2 b2

c2
. . . . . .

. . . . . . bL−1

cL−1 aL


, (3.1)

the (M̂−1)ij element is given by -

(
M̂−1

)
ij

=

(−1)i+jbi · · · bj−1θi−1ϕj+1/θL if i ≤ j

(−1)i+jci · · · ci−1θj−1ϕi+1/θL if i > j

(3.2)

where θi and ϕi follow recurrence relations as follows:

θi = aiθi−1 − bi−1ci−1θi−2 (3.3)

for 2 ≤ i ≤ L, with the initial condition θ1 = a1 and θ0 = 1, and -

ϕi = aiϕi+1 − biciφi+2 (3.4)
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for L−1 ≤ i ≤ 1 and initial condition ϕL+1 = 1 and ϕL = aL.

In our case, bi = ci = −t for every i. Since we normalize the energy scale to

t = 1, the relation is even simpler:

(
M̂−1

)
ij

=

(−1)i+jθi−1ϕj+1/θL if i ≤ j

(−1)i+jθj−1ϕi+1/θL if i > j

(3.5)

where -

θi = aiθi−1 − θi−2, (3.6)

ϕi = aiϕi+1 − φi+2. (3.7)

This procedure involves the extraction of θ and ϕ (complexity of order L) only

once, and the multiplication of the result for every i and j (Eq. 3.5); namely, the

total complexity is O(L2).

Furthermore, as was mentioned, the transmission function of a 1D wire can be

calculated from a single element in Green’s function, ĜR
w(1, L). We thereby only

need to calculate θL and place it in the following equation:

ĜR
w(1, L) =

(−1)1+L

θL
(3.8)

while the transmission function is (Eq. 2.37) -

TSD =

(
tStD
t

)2

· (~ν)2 ·
∣∣∣ĜR

w(1, L)
∣∣∣2 . (3.9)

This simple O(L) method allow us to easily calculate the conductance of larger

systems of up to L = 10000 at much shorter times. In larger systems, the dynamic

memory serves as problem, as it consumes above 1 gigabyte. To overcome this

memory issue, we must keep in mind that our tridiagonal Hamiltonian and self

energy terms are not trivial (i.e. they do not equal zero or one) only on the
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diagonal. Using the above method to find ĜR
w(1, L), we do not need the L × L

matrix, and can keep only the diagonal in the computer’s memory. By utilizing

this method, we were able to calculate even L = 106 systems.

Still, other than accuracy issues, the only important length scale of localized

systems is the ratio ξ/L. Hence, enlarging the system is equivalent to increasing

disorder, and there is no reason to spend computer time on overly large wires.

Additionally, in contrast with the transmission function, the density of statesN (E)

has to be calculated by the trace of the Green’s function (Eq. 2.48). Therefore, in

cases where N (E) is needed, one should calculate the whole diagonal of Ĝ, which

leaves us with O(L2) complexity.

3.2 Integration with the transmission function

According to the Landauer-Buttiker method, in the presence of temperature, the

total current (and therefore the conductance) receives contribution from all avail-

able energies in the system (Eq. 2.45), due to the broadening of Fermi distribu-

tions. Furthermore, in a localized regime( ξ < L), TSD exhibits sharp peaks at

certain energy values, with exponentially lower valleys between them. Numerical

integration with such a function is a challenging task, as even at extremely high

resolution in E, the integration could miss these exponentially higher transmission

peaks.

As will be discussed in Chapters 4 and 5, interesting phenomena occur also in

moderate disorders, and the disorder can be limited by ξ = L/20 or less. In this

range, exponential decay around the highest peaks is relatively slow, which means

that the area enclosing the resonance in TSD is finite, so that the overall integration

is barely affected after a certain resolution (R). For instance, in the above case

of ξ = L/20, 1 million samples within the [0, 4t] tight-binding bandwidth results
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in a reasonable accuracy, as demonstrated in Fig. 3.1 for L = 500 and ξ ≈ 25.

By using the O(L) inversion method, we were able to calculate enough iterations

to evaluate the conductance in a variety of disorders, temperatures, bias voltages,

etc.
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Figure 3.1: The impact of the integration resolution R, demonstrated by calcu-
lation of conductance as a function of temperature for a system with L = 500 and
W = 2, i.e. ξ ≈ L/20. As can be seen, the integration converges at a resolution of
about 1 million samples from the [0,4t] bandwidth.
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3.3 Appendix: Characteristic MATLAB code for

calculating conductivity

% Control Parameters

L = 500; W = 2; V_SD = 0.00001;

t = 1; t_S = 1; t_D = 1; mu = 0;

minE = -2; maxE = 2; resE = 1000000; deltaE = (maxE-minE)/(resE);

Tvec = [0,0.001,0.005,0.01,0.05,0.1,0.5,1];

% Initialization

H = zeros(L); B = zeros(L);

Trans = zeros(resE-1,2); G = zeros(length(Tvec),2);

% Setting Hamiltonian

for i=1:L-1

H(i,i+1) =-1; H(i+1,i) =-1; H(i,i) = W*(rand()-0.5);

end

H(L,L) = W*(rand()-0.5);

% Calculating transmission by Green’s function

for Ei=1:(resE-1)

E = minE+deltaE*Ei;

k = acos(-E/(2*t));

invG = E*eye(L)-H;

invG(1,1) = invG(1,1)+t_S*exp(1i*k);

invG(L,L) = invG(L,L)+t_D*exp(1i*k);

Gr1L = TriDiagInv1L(invG);

Trans(Ei,1) = E;

Trans(Ei,2) = 4*t_S*t_D*(((sin(k))).^2)*(abs(Gr1L))^2;

end

% Calculating conductance from transmission

for T_i=1:length(Tvec)

T = Tvec(T_i);

G(T_i,1) = T;

for Ei=1:(resE-1)

fSminusfD = (1/(exp((E-mu-V_SD)/T)+1))-(1/(exp((E-mu)/T)+1));

E = minE+deltaE*(Ei);

G(T_i,2) =G (T_i,2)+Trans(Ei,2)*deltaE*fSminusfD/V_SD;

end

end

% Plotting

figure(1)

loglog(G(:,1),G(:,2))
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And the calculation of Ĝ1L :

function [InvMat1L] = TriDiagInv1L(Mat)

L=length(Mat);

theta=zeros(1,L);

theta(1)=Mat(1,1);

theta(2)=Mat(2,2)*theta(1)-1;

for i=3:L

theta(i)=Mat(i,i)*theta(i-1)-theta(i-2);

end

InvMat1L=(-1)^(L+1)/theta(L);

end
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Chapter 4

Transmission resonance anomaly in 1D dis-

ordered quantum systems

This chapter presents a study that investigates the relations between electronic

eigenstates and conductance in one-dimensional disordered systems1. This study

was carried out with the guidance of Prof. Richard Berkovits, in fruitful cooper-

ation with Prof. Valentin Freilikher and Prof. Moshe Kaveh, both from Bar-Ilan

University, as well as with Dr. Yuri. P. Bliokh from the Technion - Israel’s Insti-

tute of Technology.

We show that, in contrast with homogeneous (i.e. non-disordered) systems, in

systems with open boundary conditions and weak or moderate disorder, only a

part of the states exhibits resonant transmission and contributes to conductivity.

The rest of the eigenvalues are not associated with peaks in the transmission,

and the amplitudes of their wave functions do not exhibit a significant maxima

within the sample. In a wide range of disorder strengths, the average ratio of the

number of transmission peaks to the total number of eigenstates is close to the

value
√

2/5. We derive this universal number analytically in the weak-scattering

1This study was recently published in Physical Review B as an identically entitled paper [26].
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approximation. Moreover, unlike ordinary states, the lifetime of these ‘hidden’

modes remains constant or even decreases as disorder becomes more pronounced,

depending on coupling with the leads.

These results are a perfect analogy of the spectral and transport properties

of light in one-dimensional, randomly inhomogeneous media [27], which provides

strong grounds to believe that the existence of hidden, non-conducting modes is

a general phenomenon inherent to 1D open random systems, and their fraction of

the total number of states is the same for quantum particles and classical waves.

4.1 Open systems and quasinormal modes

Electromagnetic transmission through optical cavities (etalons) is a well known

phenomenon, demonstrating peaks in transmission at frequencies that are exactly

a multiplication of the optical path. The standing waves in the cavity are directly

related to the eigen-modes of the system. However, these two statements are only

true for isolated systems with perfect reflection at the cavity’s ends (or very close

to unity). If the mirrors are only partially reflective, the modes are not well-defined

and the transmission resonances change.

In a recent paper by Bliokh et al. [27], an interesting finding regarding trans-

mission through disordered optical cavities was presented. It was analytically,

numerically and experimentally shown that in weakly disordered one-dimensional

dielectric media, a substantial fraction of optical quasinormal modes (QNMs) is

hidden, that is, it could not be detected by transmission measurements (see Fig.

4.1).

In the following sections, we show that such behavior should also be expected

40



Figure 4.1: Upper panel: Experimental result of the optical transmittance (i.e.
the power transmission) of microwaves through a disordered quasi-1D copper waveg-
uide tube (7.3cm diameter, 40cm length), filled with alumina spheres (refraction
index=3.14) at random positions, for frequencies with a range of 10 to 10.24GHz
(wavelengths from 2.998cm to 2.928cm). Lower panel: Fit of the experimental
data to the sum of Lorentzian broadened modes shows 39 modes in the frequency
range, while only 22 maxima are presented in the transmission. All other 17 modes
are hidden (Bliokh et al., 2015 [27]).

in the transmission of other physical systems, particularly electron transport in

disordered conductors.

Connecting an optical system to the outer environment and allowing a flow

of energy and particles through it, usually causes the system to become non-

Hermitian, hence, the eigen-modes do not represent any well-defined physical

quantity. However, it was suggested to analyze open optical systems using the

approximated method of quasinormal modes (QNMs) [28–32], described below.

Similarly, states of an open electronic system can also be interpreted in terms of

quasinormal states (QNSs) [28, 33].

Quasinormal state analysis is a powerful tool for investigating different open

systems. Since energy can escape, open systems do not conserve energy, therefore,
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the associated mathematical operators are not Hermitian [28]. From a mathemat-

ical point of view, QNSs are a generalization of the notion of eigenstates of closed

(Hermitian) systems, and can be found as a solution for satisfying outgoing-wave

boundary conditions. In the limit of zero leakage, these QNSs reduce to the nor-

mal states of the corresponding closed system. QNSs form a complete set, and are

orthogonal under a modified definition of the inner product, providing an eigen-

function expansion of Green’s function and the time-evolution operator [29, 30].

The imaginary parts of eigenvalues of a non-Hermitian Hamiltonian depict the

lifetimes of QNMs [31, 32], which are finite due to the flow of electrons between

leads.

4.2 Motivation - conductance resonances

Recasting the classical problem considered in Bliokh et al.’s paper [27] for electronic

systems is of interest, since one can ask additional questions regarding QNSs, which

are difficult or non-relevant in optics.

Specifically, one can delve deeper into the hidden modes’ (HM) response to

non-equilibrium conditions, such as large applied source-drain voltage and biased

temperature, or examine other effects, e.g. electron-electron or electron-phonon

interactions, etc. Moreover, many experimental procedures use conductance to

probe and count the electronic states of mesoscopic and microscopic systems, such

as narrow channels of semiconductors [34–38],carbon nanotubes [39, 40], and quan-

tum point ontacts [41]. As we show here, adding even a small degree of disorder will

result in the disappearance of modes. Hence, a better understanding of this non-

trivial relation between eigen-modes of isolated systems and transmission peaks in
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open systems is essential.

Although there is common belief that after more than fifty years of intensive

study, the transport properties of 1D disordered systems are clearly understood -

surprisingly, the existence of hidden modes in such systems has been completely

overlooked. This is perhaps due to the attention being mostly focused on the

localization in strong disorders, while the limit of weak impurities (ballistic regime)

was deemed trivial.

4.3 Observation overview

Here, we study the electronic spectra of one-dimensional disordered systems in the

non-equilibrium Green’s function (NEGF) formulation, presented in Sections 2.4-

2.8, which enables us to address the problems unique to electronic transmission.

We investigate the evolution of the transmission (Eq. 2.37), the conductance

(Eq. 2.45) and density of states (Eq. 2.48) of quantum-mechanical particles in a

random 1D potential (tight-binding wire), for a wide range of disorder strengths,

from ballistic to strong localization regimes.

In partially open homogeneous structures, like clean quantum wires, open res-

onators and so forth, each QNS has a corresponding transmission resonance (TR)

(peak in the frequency spectrum of the transmission coefficient) with resonant en-

ergy equal to the real part of the eigenvalue [42]. This is not necessarily the case in

open disordered samples. In the presence of disorder, the position and height of the

TR fluctuate, a phenomenon associated with mesoscopic conductance fluctuations

[43, 44].

Furthermore, the calculations show that one-to-one correspondence between
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a number of QNSs and TRs can be broken as well. Due to complex interference

between multiple scattered random fields in weakly disordered systems, some QNSs

become invisible in transmission (hidden), and the number of transmission peaks

falls to
√

2/5 ·NQNM (where NQNM is the total number of QNSs).

In the following sections, we show that the coexistence of two types of QNSs

(ordinary and hidden) is a rather general phenomenon intrinsic to randomly inho-

mogeneous one-dimensional quantum-mechanical systems as well. Not only do the

hidden electron states exist and manifest analogues properties as the correspond-

ing solutions of Maxwell equations, the relative number of hidden states for weak

and moderate disorders is also the same. Its mean value in a given energy inter-

val remains close to the constant 1−
√

2/5 over wide range of disorder strengths

and lengths of the system. The value 1 −
√

2/5 follows from general statistical

properties of random trigonometric polynomials.

In contrast to the well-known behavior of localized states, the lifetime of a

hidden state does not increase with increasing fluctuations of the potential, but

rather remains unchanged or even decreases, depending on the strength of the

coupling to the leads. The eigenvectors (solutions of the Schrödinger equation

satisfying the outgoing boundary conditions) of such modes are also very unusual.

The spatial profiles of their amplitudes are neither concentrated near both edges

of the system with a minimum in the center as in symmetric clean systems, nor are

they localized as in a potential with strong fluctuations. On the contrary, the wave

functions of the hidden states nestle near one of the wire edges and exponentially

decrease toward the other.

An important feature of HMs that is particular to electronic systems is that

though they appear in the DOS in the same way the ordinary modes do, they are

non-conducting, i.e. they do not contribute to conductance, even in the ballistic
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regime. The quantum mechanical treatment of these hidden QNSs by the NEGF

method enables a simple analysis of their spatial behavior. We show that the

TR anomaly is directly related to hybridization with the leads, and therefore, it

becomes more subtle at higher disorders and vanishes when the localization length

is shorter than the system length.

To complete the chapter, in the last section, we repeat the derivation of the

ratio
√

2/5 based on the single scattering approximation in 1D, and on the nature

of trigonometric polynomial functions.

4.4 Results and discussion

Transmission resonances

In an isolated wire composed of L sites with random potentials, the eigenstates

vary with the on-site disorder strength, yet each state has a real energy eigen-value,

and the DOS, N (E), is in following with Eq.(2.46).

However, once the wire is coupled to the leads, the eigenvalues become complex,

but the DOS can nevertheless still be defined (see Eq. 2.48). In this case, N (E)

shows peaks at energies close to the eigenvalues of the isolated system Ei, with

a broadening that becomes wider as tS/D approaches 1. The total number of

quasinormal states is given by the integration NQNS =
∫∞
−∞N (E ′)dE ′. Obviously,

the conservation of degrees of freedom oblige NQNS = L.

The transmission function TSD in an open and disordered system, similar to

the DOS, shows sharp resonances located close to the eigen-energies of the wire

Ei, with exponentially lower valleys between them. Naturally, the mean value

of the transmission is attenuated as the disorder increases and can be scaled by
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TSD ∼ exp(−L/ξ), as was shown in Fig. 2.4. However, in contrast to the DOS,

the transmission significantly changes in an open wire, as some of the peaks that

existed in the clean wire disappear.

Figure 4.2: The number of the transmission maxima NTR (magenta squares) and
the number of quasi normal modes, NQNS, calculated by integration with the density
of states (cyan triangles) for a disordered 1D wire as a function of the length L.
The cases of low disorder ξ ≈ 10000 (left); medium disorder ξ ≈ 100 (middle);
and strong disorder ξ ≈ 25 (right) - are presented. In the low disorder case, the
number of transmission peaks fits NTR =

√
2/5L (lower black dashed lines), while

the integrated density of states is in following with L (upper black dashed lines).
In higher disorders, more transmission resonances are seen (i.e. NTR >

√
2/5L)

due to localization. The missing data of NQNS at higher disorder levels is due to
numerical inaccuracies in the integration with the exponentially high and narrow
peaks of N (E).

In Fig. 4.2, we present the results for the number of quasi-normal states,

NQNS, and for the number of transmission resonances (maxima in TSD (E)), NTR,

as functions of the wire size L for different strengths of disorder (hereinafter, all

lengths are presented in units of the lattice constant a, which is set to unity).

As can be seen, the dependence of NTR on L is quite different from that of

NQNS. For a weak disorder (ξ ∼ 104 � L) , NTR is smaller than NQNS and

equals
√

2/5L. The rest of the QNSs are hidden, exactly as they are in optical
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systems considered in Ref. [27]. As the disorder becomes stronger, the hidden

(with no associated transmission resonances) modes gradually reappear as peaks

in the transmission function. This can be seen in the increase of the slope of NTR

versus L with increasing W . In a stronger disorder, this ratio is closer to one.

Hidden modes’ behavior in space

To understand the nature of the hidden states, let us juxtapose the transmission

peaks with the eigen-vectors of the disconnected wire. In the upper panel in Fig.

4.3 we plotN (E) and TSD (E) for a typical realization of disorder in a L = 500 wire

with W = 1, ξ ∼ 102. The corresponding modulus-squared eigen-vectors for the

isolated system |ψi(r)|2 are plotted in the middle panel. It is easy to see that each

transmission peak (and the associated peak in DOS) corresponds to an eigenstate

of the isolated wire, and the peaks in N (E) and TSD(E) are close to the real

eigenvalue εi (indicated by vertical dashed lines). However, the hidden state #216

does not show a peak in the transmission, and the DOS exhibits only a very broad

maxima in this eigenvalue. The distinction between hidden and ordinary states

also shows up in the local density of states, which for an ith eigenstate we define

as ρi(r) =
∫ εi+∆/4

εi−∆/4
ρ (r, E) dE ,where εi is the level’s-eigen energy and ∆ is the

level spacing. Indeed, while for the ordinary states the local DOS of the connected

wire is similar to the density of the disconnected wire i.e., ρi(r) ∼ |ψi(r)|2, for the

hidden mode (state 216), there is a huge difference between ρ216(r) and |ψ216(r)|2

(see lower frame of Fig. 4.3).

In Fig. 4.4, the LDOS map of the same system in the relevant energy range is

presented. The hidden mode originally located at E = 1.58 (#216) is broadened

much beyond the mean level spacing. The spatial distributions of the two types of

states are also quite different. Namely, the hidden ones are always nestled against
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Figure 4.3: Upper frame: Typical density of states N (E) (top red line) and
transmission TSD (E) (bottom blue line) spectra of a particular realization of dis-
order (L = 500, W = 1, tS/D = 1). The positions of the isolated Hamiltonian
eigenvalues εi are indicated by the vertical dashed lines. Middle frame: The
squared eigenvectors |ψi(r)|2 of the isolated Hamiltonian as a function of the po-
sition along the wire, j. The 216th eigenstate is located close to the system edge,
therefore, its transmission resonance is washed out (see upper frame) when the wire
is coupled to the leads. Lower frame: The local density of states integrated in

the vicinity of the i-th disconnected eigenvalue εi, ρi(r) =
∫ εi+∆/4

εi−∆/4
ρ (r, E) dE. For

most states ρi(r) ∼ |ψi(r)|2, except for the hidden mode (the 216th eigenstate) for
which the local density close to the leads is strongly suppressed.

an edge of the sample, so that when the wire is coupled to the leads, these modes

become strongly hybridized with the states of the neighboring lead and do not

reach the opposite edge of the sample.

Moderate disorder

Numerical calculations show that in a weak disorder, where ξ is larger than the

system size, only
√

2/5N transmission peaks exist, exactly as they do in the case

of weakly scattered electromagnetic waves. However, for stronger disorders where

ξ < L, only a small fraction (of order 2ξ/L) of the states hybridize with the leads.

States that do not hybridize with the leads might have a very small transmission,
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Figure 4.4: A color map of the local density of states ρ(j, E) of the system de-
scribed in Fig. 4.3. The ‘ordinary’ modes (in E ∼ 1.544, 1.552, 1.575, 1.59, 1.604)
show a relatively narrow energy distribution, while the hidden mode originally lo-
cated in E ∼ 1.58 (marked with a yellow circle on the left) is significantly broadened
due to coupling to the left lead. A similar hidden mode’s tail can be noted at the
right end, relating to a state hidden at higher energy (long yellow circle).

but nevertheless, they do have a distinct transmission peak. Thus, we expect that

NTR/NQNS will scale with ξ/L. Indeed, as can be seen in Fig. 4.5, this seems to

hold for different values of L and disorder strength W .

One can present the above argument in a more quantitative form. The overlap

of a localized state with the left lead should be proportional to exp(−bj0/ξ), where

j0 is the center of the localized state and b is a numerical constant of order unity,

depending on the details of the boundary condition. Averaging the region 0 <

j0 < L/2 for the left lead and L/2 < j0 < L for the right lead results in:

f =
2

L
·
L/2∑
j0=1

e−bj0/ξ =

(
2

L

)
1− e−bL/2ξ

eb/ξ − 1
(4.1)

∼
(

2ξ

bL

)(
1− e−bL/2ξ

)
.
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Figure 4.5: The ratio of the number of observed transmission peaks to the length of
the wire NTR/NQNS for various disorder strengths, W , and wire lengths L. Upper
inset: Systems with lengths L = 100 and L = 200 for various disorder values.
Lower inset: Systems with disorder strengths W = 1 and W = 5 for various
lengths. Main panel: The ratio NTR/NQNS as a function of the scaling parameter
L/ξ for the results presented in the insets. All curves of NTR/NQNS fall on top each

other. For L/ξ < 1, NTR/NQNS ∼
√

2/5 remains. Once L/ξ > 1 , the ratio increases
until NTR/NQNS → 1 for large values of L/ξ, i.e. for strong localization, all modes
have transmission resonances. The black dashed line represents the dependence of
NTR/NQNS on L/ξ, according to Eq. 4.1-4.2 with b = 1/4.

Finally, the ratio of the number of transmission peaks to total number of states

is obtained by subtracting the fraction of hidden modes times the probability they

overlap with the leads -

NTR/NQNS = 1− f ·
(

1−
√

2/5
)
, (4.2)

which after fitting the parameter b, reasonably matches the numerical results (Fig.

4.5).

In Fig. 4.6, we demonstrate the evolution of the transmission spectrum with

an increasing strength of disorder. As W grows, the hidden modes gradually

disconnect from the boundaries of the wire and form transmission resonances,

until all of them become ordinary, NTR/NQNS → 1, for a large W .
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Figure 4.6: Upper frame: The transmission TSD (E) for a given realization of
disorder at different strengths W from 0.7 (top black line) to 1.3 (bottom red line),
for a L = 500 sample with tS/D = 1. The eigen-energies of the corresponding isolated
wires are marked by circles. Two modes are hidden at a low W , and become visible
only at higher disorder levels (marked by arrows). Lower frame: The modulus-
square of the isolated eigen-vectors relates the two above hidden states. As the
disorder increases, the width of the modes becomes smaller, and eventually, they
disassociate from the states of the wire.

It is also interesting to note that the height of the transmission peak is a non-

monotonous function of W . While one may naively expect that peaks will reduce

as disorder becomes stronger, this is correct only on average, and particular peaks

may actually increase when disorder increases.

Hidden states’ life-time

The spectral broadening of the wire eigenstates (or of the imaginary parts of

the eigenvalues in Hamiltonian language) is inversely related to their lifetime. In

disordered open systems, as the localization length becomes shorter (i.e. larger

disorder), one can expect all modes’ lifetimes to increase. This is indeed the case

for regular modes, as seen in Fig. 4.7. However, the hidden states behave in an
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Figure 4.7: Density of states N (E) of the system depicted in Fig. 4.6 at different
energy range. As disorder increases, the ordinary states become narrower and with
larger fluctuations, while the hidden mode (marked with blue arrows) widens. Fit
to Lorentzian broadening in accordance with Eq. 4.3 (blue patterned areas) results
in γ0.8

i = 0.00165, γ0.9
i = 0.00168, γ1.0

i = 0.00172, γ1.1
i = 0.00201 and γ1.2

i = 0.00249,
namely, a shorter lifetime at higher disorder levels (see text).

unusual way, and remain wide. One can show [23] that if the self-energy term (Eq.

2.33) varies slowly with E, the DOS broadening has a Lorentzian shape:

N (E) ∝
∑
i

γi

(E − Ẽi)2 + (γi)2
, (4.3)

where γi is the imaginary part of the ith eigenvalue, and Ẽi is its real part, modified

by the connection to the leads. This relation allows one to evaluate the lifetime of

the ith mode, ~/4γi, by fitting N (E) to Eq. 4.3. For the system depicted in Fig.

4.7, the life time of the hidden mode in the lower disorder (W = 0.8, γi = 0.00165)

is longer than in the higher disorder (W = 1.2, γi = 0.00249).
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Figure 4.8: The ratio of the number of observed transmission peaks to the number
of QNSs, NTR/NQNS, versus lead-system coupling strength, tS/D. Top panel: W =
0.1 for different system lengths L. Bottom panel: L = 100 for different disorder
strengths W . In both cases, as tS/D → 0, NTR/NQNS ∼ 1, while in tS/D → 1

NTR/NQNS ∼
√

2/5.

Coupling strength and hidden states

Since the number of observed transmission resonances depends on both disorder

and coupling to the environment, the ratio NTR/NQNS can be tuned by varying

tS/D. As this coupling parameter decreases, hidden modes decouple from the

leads and develop peaks in the transmission spectrum. As can be seen in Fig.

4.8, in a weak disorder (W = 0.01), this transition is sharp: all hidden modes

become visible due to a very small change at the vicinity of tS/D ∼ 1. As the

disorder increases (or the system becomes longer), the coupling amplitude needed

to resolve all transmission resonances becomes smaller, and the jump in the ratio

NTR/NQNS broadens. This behavior is counterintuitive, as one may presume that

the enhancement of disorder makes the sample more ‘closed’, and will thereby be
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more easily disconnected from the leads. In actual fact, the disorder anchors the

electronic states firmly to their position in the sample (the edges, in the case of

hidden modes); therefore, a lower tS/D is required in order to disconnect them.

Conductance peaks

While transmission is the natural quantity to measure for optical systems, in elec-

tronic systems, it is much more common to measure conductivity. Measuring

conductivity is different than measuring transmission, due to several aspects: Un-

like the ease of generating a single-mode laser beam, electrons are naturally widely

distributed in the energy domain due to thermal broadening. Therefore, observing

the modes by measuring conductance is possible only if the mean level spacing, ∆,

is larger than kBT . Thus, the ratio of the number of observable conductance peaks,

Ncp, to total number of states Ncp/NQNS, falls to zero as kBT /∆ � 1. Moreover,

the applied source-drain voltage also affects the visibility of the modes. Even when

no interactions are considered (thus allowing Eq. 2.45 to be used), an interesting

difference between voltage and temperature emerges. As can be seen in Fig. 4.9,

since temperature is very effective in smearing conductance peaks, once kBT ∼ ∆,

it is impossible to observe the conductance peaks (the modes). However, for the

source drain voltage, even when V/∆ ∼ 10∆, most modes are still observable in

the conductance. This stems from the fact that source drain voltage is equivalent

to a sharp cut-off in energy, thus being more sensitive to the discrete nature of the

modes. It would be very interesting to study the interplay of these effects in the

presence of electron-electron or electron-phonon interactions.
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Figure 4.9: The ratio between the number of conductance peaks to the number
of QNSs, Ncp/NQNS, for different values of temperatures kBT and voltages V , in a
system with L = 500 and small disorder W = 0.1 (i.e. ξ � L). Ncp is calculated
by counting the maxima in the current and changing the chemical potential in
the leads µ. Both quantities are scaled by ∆ = 4t/L, the mean level spacing of the
disconnected wire. The transition from zero temperature behavior and infinitesimal
biasNcp/NQNS ∼

√
2/5 to high temperature/voltage behaviorNcp/NQNS → 0 occurs

around kBT /∆ = 1, while even for quite a large source-drain bias V/∆ = 10, a finite
number of modes is still observed in conductance at low temperatures.

4.5 Analytical calculation of the ratio NTR/NQNS

The ratio between the number of transmission resonance and the quasi normal

states at weak disorder was shown repeatedly to equal
√

2/5. The origin of this

irrational number is not a miracle, and was elegantly calculated for electromag-

netic waves in [27]. In the following paragraphs, we repeat these calculations for

completeness.

Assuming a single scattering process and free electron wave propagation be-

tween scatterers, the transmission probability of an electron with momentum k in
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a wire with on-site disorder can be written as:

T (k) = 1− |r (k)|2 = 1−

∣∣∣∣∣
L∑
n=1

rn · ei2kan
∣∣∣∣∣
2

, (4.4)

where rn is the random reflection amplitude at site n, and a is the lattice constant.

For convenience, we introduce the unit-less length scale so that a = 1. Transmis-

sion resonances are defined as local maxima of the transmission coefficient T (k),

so that the resonant values of the momentum, kn, are the roots of the equation

dT (kn)
dk

= d|r(k)|2
dk

= 0, which can be presented as -

N∑
n=1

sin(2kn) · An = 0, (4.5)

where

An = ΣN−n
l=1 rn+lrln+ ΣN

l=nrl−nrln.

Generally speaking, Eq. 4.5 is a trigonometric polynomial with random coeffi-

cients. The statistics of zeroes of such polynomials have been studied in [45]. Using

the results of [45], it can be shown that in a certain interval ∆k, the ensemble-

averaged number of the real roots Nroot of the sum in Eq. 4.5 equals -

Nroot =
2∆k

π

√∑N
l=1 l

4(N − l)∑N
l=1 l

2(N − l)
. (4.6)

Calculating the sums in Eq. 4.6 within the limit N � 1, one gets [46] -

Nroot ≈
2a∆kN

π

√
2

5
. (4.7)

Since the total number of QNSs in the interval ∆k is equal to ∆kLa/π, and
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NTR = Nroot/2, from Eq. 4.7 it follows that -

NTR

NQNS

=

√
2

5
. (4.8)

In Fig. 4.2, it is clearly seen that within the limits of a weak disorder (ξ � L),

this relation is perfectly followed by the numerical quantum calculations.

4.6 Conclusions

In this chapter, we discussed the effect of disorder on the transmission and conduc-

tivity resonances. We have shown that, like in disordered optical systems, in a 1D

wire with on-site random potential a ballistic regime exists, in which a significant

amount of eigen-states does not show clear peaks in transmission measurements.

These ‘hidden’ modes have extremely broad spectral distributions which, contrary

to ordinary Anderson modes, become even broader (i.e. have shorter life-times)

as the disorder increases. The primary cause of this phenomenon is hybridization

with the states of the attached open leads, which falls off as the localization length

ξ becomes shorter than the system length L, or as the coupling to the leads is

reduced. In a weak disorder, the average ratio of the number of hidden modes to

the total number of electron states in a given energy interval deviates only slightly

from the constant, 1 −
√

2/5, as the fluctuations of the potential or length of

the wire are increased. This constant coincides with the value analytically calcu-

lated in the single-scattering approximation. The existence of the hidden modes

may substantially affect transport measurements in quantum dots, nanotubes, and

topological insulators, in both weak and moderate disorders.
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Chapter 5

Temperature-dependent conductance in the

absence of phonons

In continuation with the transmission and conductance calculation presented in

the previous chapter, in the following chapter, we focus on the relation of over-

all conductance with temperature. Based on the NEGF method, the numerical

calculations show that conductance is significantly increased with the rise of tem-

perature, despite the fact that electron-phonon interactions were not taken into

account.

As we show below, this effect, which occurs only in a temperature range where

the mean level spacing between electronic states is comparable to thermal energy,

originates from the unique statistical behavior of transmission function resonances.

Due to the broadening of Fermi distribution with T , at higher temperatures, the

probability that a highly transmitting resonance will participate in the conduc-

tance increases. On average, this effect generates an increase of several orders of

magnitude in conductance with temperature, over a wide range of temperatures.

We discuss this novel result and suggest that this effect may have a significant

role at low enough temperatures, where effectively phonons do not contribute to

hopping, or alternatively, in systems with a weak electron-phonon coupling. In
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these cases, where Mott’s VRH theory predicts zero conductivity and no temper-

ature dependence, the inherent effect we present here is still relevant.

5.1 Conductance calculation in the presence of

temperature

As a general rule, the relation between conductance and temperature in highly dis-

ordered systems is usually discussed in the framework of the variable range hopping

(VRH) picture, where phonons play a major role driving the electrons between lo-

calized states [10]. As was discussed in Section 1.2, according to the VRH picture,

the probability of an electron hopping between localized states is proportional to

the chance of absorbing or emitting a phonon with energy associated with the

energy difference between the sites. The conductance temperature dependence in

the VRH process has a softer than activated exponential form, G ∝ exp[−(T0

T
)

1
d+1 ]

(Eq. 1.12). This prediction and its implications in various systems was demon-

strated in many experiments, with different disorders, dimensions and materials

[15, 47, 48], and it is commonly used as an indication for a hopping system, where

T0 provides information on the exact disorder level of the samples.

However, many of the experimental evidences of the VRH relation show de-

viations in the lower temperature range, which might originate from many other

physical processes. Furthermore, the VRH model is based on several main as-

sumptions, among them neglecting boundary conditions and the broadening effect

of the leads, incoherence between adjacent localized states, and hopping between

nearest neighbors only. It also assumes that all states have an exact localization

length, which is much shorter than the system length. All of these presumptions
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could alter the exact relation in Eq. 1.12 in an actual quantum system.

In the following chapter, we face similar questions from a different angle. We

numerically calculate the full transmission function TSD of coherent (i.e. non in-

teracting) electrons in systems which are connected to leads, and change the tem-

perature in the leads. According to the Landauer-Buttiker formalism (Eq. 2.16),

the current through the system, I, is equal to the integral over all transmission

channels with a probability factor governed by the Fermi-Dirac distributions in

the leads, i.e.

I =
2e2

h

∫
TSD(E) [fS (E)− fD (E)] dE, (5.1)

where fS/D is the Fermi-Dirac distribution in the source/drain lead (Eq. 2.14).

In other words, the current is proportional to the probability to find an occupied

state in the source lead and an empty state in the drain lead, multiplied by the

transmission probability, as illustrated in Fig. 5.1.

5.2 Results and discussion

Conductance at T = 0

At zero temperature, and within the limit of infinitesimal bias voltage, Eq. 5.1

may be approximated by -

I(T = 0, VSD → 0) =

∫
2e2

h
TSD(E) [V δ(E − µ)] dE, (5.2)

where δ is Dirac’s delta function, and µ is the chemical potential.

The result of Eq. 5.2 is a linear relation of the conductance and transmission
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Figure 5.1: Demonstration of the Landauer-Buttiker calculation of conductance
in finite temperatures. Top panel: Characteristic transmission function of disor-
dered one-dimensional system. Middle panel: Fermi distributions of the leads for
chemical potential µ = 0 and biased voltage VSD = 2kBT . Bottom panel: The
contribution of an electron with energy E to the current. The total conductance is
proportional to the integral over the black curve (Eq. 5.1).

function -

G(T = 0, VSD → 0) =
I

VSD
=

2e2

h
TSD. (5.3)

However, when applying higher voltages, this approximation is not valid and

one should have a closer look at the relation in Eq. 5.1.

Disordered conductance distribution

In a case where the disorder level is high enough and the localization length of

the wire, ξ, is shorter than the total length L, the system is ‘localized’ and the

transmission presents sharp resonance peaks randomly distributed in the spectrum,
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Figure 5.2: Transmission probability as a function of incident electron energy
through a 1D wire in a length of L = 100, for the same array of on-site disordered
energies, but with different amplitudes: W = 0.1 (gray, top), W = 1 (blue), W = 2
(green), W = 3 (orange), and W = 4 (red, bottom).

while between the peaks, the transmission value decays exponentially.

This random nature of conductance leads us to describe it from a statistical

point of view. In the localized regime, the incident electrons are scattered many

times before being transmitted through the wire; hence, the full distribution of the

transmission function may be approximated by a production of the independent

probability of being scattered by a single scatterer many times.

According to the central limit theorem the result is a log-normal distribution -

P (TSD;κ, σ) =
1

TSD
· 1√

2πσ2
· exp

(
−(ln TSD − κ)2

2σ2

)
, (5.4)

where eκ and eσ
2

are the mean and variance of the single scatterer distribution,

respectively. The mean value of the transmission is related to κ and σ by -

〈TSD〉 = e(κ+σ2/2). (5.5)
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An explicit calculation of several transmission distributions for a different

strengths of disorder of the 1D wire are presented in Fig. 5.3, showing that the

log-normal distribution is extremely skewed.

Since the log-normal distribution is highly skewed, its mean value is substan-

tially different from the median value, which is the maxima in the ln(TSD) PDF

plots, and equals e−κ. This difference may be understood better from Fig. 5.2:

While it is much more probable to find a transmission value in TSD(E) with a

low value, there are resonances with exponentially higher transmission. There-

fore, averaging over energies (or equivalently, according to the ergodic assumption,

avaraging over different realizations of disorder) will result in average values that

are much closer to the maximal values at the peaks.

This effect, originating from the skewed behavior of the log-normal distribution,

plays a major role in the calculation of the current in Eq. 5.1 when the temperature

increases.

Conductance at T > 0

At finite temperature, the Fermi distribution is no longer a step function, and the

linear relation between transmission and conductance (Eq. 5.3) is broken.

In the case of a low disorder strength (ξ � L), the transmission is close to

unity, and conductance is on average constant with temperature. However, as the

disorder increases, the distribution of TSD generates large mesoscopic fluctuations

with changing T , generated by the broadening of fS/D, which opens current paths

to farther areas of the spectrum.

We demonstrate this behavior in more detail in Figure 5.4. In the first panel

(a) we present G(T ) plots of several wires with low disorder, i.e ξ > L (blue solid

lines), and their average value (red dotted line). Remembering the resonant nature
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Figure 5.3: Panels a-d: Probability density functions of the transmission, cal-
culated using 100,000 different realizations of disorder with a length of L = 250
and various strength of disorder in the localized regime (ξ < L), demonstrating the
log-normal nature of the transmission distribution. Panel e: Distribution of the
above transmission function’s logarithm. Black dashed lines fit with Gaussian.
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Figure 5.4: Conductance as a function of temperature of 11 wires with L = 500 and
µ = 0 - for a: ξ ≈ 10000 (W = 0.1), and b: ξ ≈ 25 (W = 2). While in low disorder
the mean value (red dashed lines) is a good representative of the conductance, as ξ
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typical average value to be much closer to the occasional maximal curve.
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Figure 5.5: Linear average of conductance as a function of temperature for a wire
with L = 100 and ξ ≈ 10, with different sampling sizes n for n = 10, 50, 100, 500 and
1000. Due to the wide distribution of TSD, the averaged result does not converge
for any reasonable n.

of the transmission function, we deduce that in some of the wires, the chemical

potential µ is situated in a gap between transmission peaks, and therefore at T → 0

the conductance is small. As the temperature increases, the Fermi distribution is

spread over a wider region, and at some point, a transmission peak is included and

conductance is increased. In other cases, µ is originally located close to a resonance,

and increasing T results in a decrease of G. In the case of high disorder, where

ξ � L (panel b), the probability of having a resonance peak originated exactly at

µ is practically zero, and all curves are positive.

Moreover, due to the broad form of the log-normal distribution of TSD, the

variations in G with T are also exponentially larger. This variance does not allow

using the simple average of the distribution (red dashed lines), which results in a

meaningless curve and reflects only the coincidental highest value of the transmis-

sion. A few similar attempts to calculate mean conductance are presented in Fig.

5.5, with different sampling sizes n (number of averaged systems), showing that

the result does not converge even at n = 1000.
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Averaging conductance

The wide and skewed distribution of TSD in the localized regime and the failure to

calculate a meaningful average of the conductance, obliges the use of a different

method to define its temperature dependence. The logarithmic nature of the

lognormal distribution and the exponential behavior of conductance fluctuations,

leads us to claim that the natural parameter that properly reflects the temperature

dependence is the median mg of the conductance.

From an experimental point of view, there is no way to evaluate the true mean

value of the conductance of a 1D sample, as we demonstrate in Figures 5.4 and

5.5. Even measuring a large number of different systems does not reflect the

distribution of conductance, as it is governed by the occasional highest peaks in

the conductance, which, as we have seen, are exponentially higher than the average

conductance.

Moreover, as was described earlier, the lognormal distribution in Eq. 5.4 is a

result of multiplying the probability of being scattered by a single scatterer many

times. Therefore, the characteristic conductance is the product of its random

variables -

(Πn
i=1Gi)

1/n , (5.6)

or equivalently, the exponential of the summation over its logarithm -

exp

(
1

n

n∑
i=1

log(g)

)
. (5.7)

According to the central limit theorem, at n� 1, these values will converge to
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the mean value -

exp

(
1

n

n∑
i=1

log(g)

)
→ exp

(
1

n

n∑
i=1

κ

)
= exp (κ) , (5.8)

which is exactly equal to the median of Eq. 5.4.

The median values of conductance for the exact set of systems presented in Fig-

ures 5.4b and 5.5 are presented in Figures 5.6 and 5.7, respectively, demonstrating

that the median is a true indication of conductance despite its large fluctuations,

showing a clear convergence even with a low sampling size n.
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Figure 5.6: Conductance as a function of temperature in 11 wires with L = 500
and µ = 0, similar to Fig. 5.4b. The median value (orange dashed line) calculated
in Eq. 5.8 is a good representative of the conductance curves.

Temperature dependence

The resulting relation of conductance with temperature, as depicted in Fig. 5.8 for

several strengths of disorder, shows a significant increase of conductance at higher

T within a wide region of temperatures. As was aforementioned, the temperature

range is bounded from above by the 4t width of the tight-binding band (Eq. 2.32),

and from below by the mean level spacing in the finite wire, which is proportional
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Figure 5.7: Logarithmic average of conductance as a function of temperature for
the exact set of wires in Fig. 5.5. This averaging method is an indication of the
median mg, which is a better inherent parameter of the disordered system.

to 1/L.

The origin of this positive relation of conductance with temperature is basically

statistical. As the temperature increases, Fermi distributions are widened and

more channels participate in the transmission. In ballistic systems, where TSD →

1, the conductance does not change with T , since the area between fS and fD

(middle panel of Fig. 5.1) remains constant. This area can be easily shown to

be equal to the applied bias voltage, VSD. However, a log-normal distribution

of the transmission values in localized 1D systems means that most transmission

channels are effectively zero, yet once in a while the system finds an exponentially

higher resonance peak in TSD(E). This phenomenon leads to an effective increase

of the total conductance G = I/VSD with temperature, as the Fermi distribution

is widened and the probability of finding such a channel is larger at a higher T .

This effect, in addition to the highly skewed log-normal behavior of these peaks,

overcomes the linear decay from the smearing of (fS − fD).

Although the overall conductance is lower at higher disorder strength, the res-

onant nature of TSD(E) leads to a stronger effect of many orders of magnitude at
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length L = 500 for different localization lengths. The conductance shows a clear
positive temperature dependence in the accessible range (see text).

higher disorders, and for a wider range in T . The relevant temperature scale is

within the range of the mean level spacing. In mesoscopical systems, this range is

around the available measurement range (from a few tenths up to a few hundreds

Kelvin). In macroscopical systems, however, this effect will be much smaller, as

conductance is already relatively saturated. On the other hand, in small micro-

scopical systems, mean level spacing is within the range of much higher energies.

Therefore, the probability that the Fermi distribution will occasionally include a

higher TR due to an increase in temperature is very low.
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5.3 Conclusions

In contrast to common statement that the increase of conductance with T in disor-

dered metals is attributed to the VRH theory and to the contribution of phonons

to the transport process - in the above model we have demonstrated a different

reason for such temperature dependence. We have shown that at sufficiently low

temperatures, where electronic mobility is governed mainly by coherent trans-

mission, a large region exists, in which conductance is increased with T even in

the absence of phonons. The origin of this temperature dependence is mainly the

unique statistics of the transmission function in highly disordered systems, the log-

normal distribution, which originates from the fact that the electrons are scattered

many times during the transport process.

In most macroscopic cases, the magnitude of this temperature dependence is

not comparable to hopping conductivity, since it requires direct tunneling through-

out the entire sample. Nevertheless, it may be significant in a temperature range

in which the VRH is less effective, such as T � T0, in systems with low cou-

pling between electron and phonons, or in nanoscopical systems. Moreover, many

conductance-versus-temperature experiments in disordered materials show clear

VRH behavior but only in a limited region. Few models have been suggested

to explain these deviations, such as more than a single energy scale in the sys-

tem, many-body transport, and different dimentionalities at different tempera-

tures. However, the inherent relation presented in the above study could shed

some light on the origin of many of the experimental deviations from the VRH

model.
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Part III

Temperature Dependent

Conductance Dynamics in

Electron Glasses:

An Experimental Study
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In this part, I present novel experimental results of conductance in discon-

tinuous two-dimensional metallic layers fabricated at low temperatures. In these

samples, electronic conductance shows a slow relaxation after an excitation, as well

as memory of the previous electronic condition. These effects are attributed to the

electron glass phenomenon (EG), where electrons in the disordered metal strongly

interact with the lattice and with other electrons, and therefore show glass-like

dynamics.

In contrast to previous studied systems, EG conductance dynamics in our sam-

ples show a strong slowdown with decreasing temperature T . Furthermore, this

slowdown was found as dependent not only on T , but also on Tmax, the maximal

temperature the sample was exposed to. In addition, at a finite temperature be-

low Tmax, this slowdown stops, and the dynamics become independent of T , an

effect that is attributed to a crossover from thermally activated glass to quantum

glass. These three observations are explained in the framework of the configura-

tion space, indicating that this behavior is more general and may also be present

in other types of glass, if prepared below glass temperature.

The first part of the results, namely: the slowdown of dynamics with T and

the relation to Tmax, was recently published in PRL [49]. The latter part, the

crossover to quantum glass at low temperatures, is currently in preparation and

will be submitted shortly.

This study was performed under the supervision of Prof. Aviad Frydman,

following preliminary work by Dr. Tal Havdala (Bar-Ilan University) [50], and in

collaboration with Thierry Grenet and Julien Delahaye (Insitut NEEL, Grenoble)

for the experimental aspects of the work, and with Ariel Amir (Harvard University)

for the theoretical aspects.
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In the following introductory Chapter 6, I provide an introduction to the glass

state of matter and to EG in particular, including a brief overview of experimen-

tal observations in previous studies, and a theoretical explanation employing the

concept of configuration space.

In Chapter 7, an overview of the experimental setup is presented. I discuss

the methods we utilize to fabricate and measure the metallic films, and present

characteristic results of the glassy behavior of our samples.

In the last two chapters (8 and 9), I present and discuss the novel results of

the glassy dynamics of conductance, and the associated theory.

74



Chapter 6

Introduction: Electron Glass Phenomenon

6.1 Glass state of matter

Common soda-lime glass, which we use for windows, mirrors and bottles, appears

to be a solid substance at room temperature. However, in reality, this material

can be described as a completely different phase of matter, since it is different in

many aspects from both the solid and liquid phases.

The phase transition between solid and liquid is defined by the non-continuity

of the order parameter (usually the density or the volume) as a function of temper-

ature. As a result, the entropy is sharply changed at the melting temperature Tm,

and the heat capacity diverges. In glasses, on the other hand, this phase transition

does not exist. Cooling a SiO2-based glass (’window glass’) from a high T makes it

become more and more viscous, until below a certain temperature, named ”glass

temperature” (TG), the changes in time due to external force cannot be observed

in any reasonable time scale1, 2 and the matter seems to be a solid. This lack

1Several different definitions of TG are in use in the different glass systems, most are an
arbitrary choice of temperature at which the changes cannot be observed in any reasonable
timescale. In other systems, TG is defined as a point where the order parameter exhibits a
relative saturation. In this dissertation, we adopted a more theoretically-oriented definition for
EG glass temperature (see section 6.2 below).

2An example of this behavior is the pitch drop experiment [51], where a piece of pitch (asphalt)
was inserted into a funnel, extruding a single drop circa every 10 years! operating since 1927,
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of a well-defined phase transition implies that window glasses never form a solid

structure, and in fact, can be interpreted as liquids with extremely high viscosities.

The origin of this unique behavior is attributed to the disordered nature of the

glass phase, which generates strong internal frustrated interactions between the

atoms. When a glass is cooled too fast, the atoms remain disordered, and frustrated

inter-atomic interactions are preserved even at low temperatures. Accordingly, it

has been shown [52, 53] that many other substances can exhibit glassy behavior

if cooled fast enough, while, on the other hand, the glass temperature of glasses

decreases at very low cooling rates (Fig. 6.1).

En
e
rg
y

Temperature

Figure 6.1: Internal energy of a glassy system as a function of temperature, for dif-
ferent cooling rates. At infinite slow rates, the system experiences a phase transition
to a solid phase at Tm. At faster cooling ratess the liquid shows a smooth transition
through a variable glass temperature (demonstrated by Tga and Tgb.(Debenedetti
et al., 2001 [52]).

Similar to window glass and other structural glasses, these two conditions,

namely, strong frustraetd interactions and disorder, are common in other physical

systems that present glass-like behavior. In this category, one could consider sys-

tems of interacting spins (spin-glass) [54, 55], bonded polymeric chains [56], flux

it is currently waiting for the 10th drop, and is considered the longest running experiment in
history.
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relaxation in superconductors [57], dipole moments (dipole glass”) [58], porous

silicon [59], and even crumpled nylon or paper foils [60].

To demonstrate this frustration behavior, one may consider a system that con-

sists of four spins with ferromagnetic and antiferromagnetic interactions, as illus-

trated in Fig. 6.2.

1 2

12J

23J

34J

41J

34

Figure 6.2: A system of 4 spins with ferro/antiferromagnetic interactions between
them, where blue arrows represent the spins, and black arrows represent the inter-
action between them. Following the Ising Hamiltonian between nearest neighbors-
H = −

∑
ij
JijSiSj , with a gray ’+’ sign that represents Jij > 0 and ’−’ Jij < 0,

one can easily see that the interaction between 3 and 4 is frustrated, and that there
is no true equilibrium in this simple system.

Due to the disorder in the interaction term Jij, two main results occur: A.

There is no true equilibrium in the system, as at least one interaction is not

satisfied. B. Switching only one spin at a time, the system has to pass through

more frustrated configurations in order to switch between low energy (i.e. less

frustrated) configurations.

Even in cases where there is no inherent frustration in the system (such as in

structural glass), when cooling it rapidly below the melting point, some restrictions

evolve in the internal structure, and the dynamics become glassy.
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6.2 Configuration space

The demonstration of frustrated spins in Fig. 6.6 leads one to think of a simple way

to describe the dynamics of disordered glassy systems via the configuration space

(often referred to as the ’phase space’). In this representation, each configuration of

microscopical elements in the system is a point in a multidimensional space, while

changes in the locations/orientation of the microscopical elements (spin reversion,

atom movement, etc.) are a vector in this space. The internal energy E of this

particular configuration is plotted in an additional dimension, and the resulting

surface is the potential landscape of the system.

Since each dimension is attributed to the movement of a single element, the

configuration space number of dimensions is equal to the degrees of freedom in

the system. Nevertheless, despite its huge dimensionality, the configuration space

can provide useful insights into the dynamics of glass by examining it in a smaller

dimension case. In Fig. 6.3, a characteristic potential landscape in a disordered

system is plotted. The landscape consists of many local minima, with energy

barriers between them.

Above the glass-transition temperature, TG, which we define here as the energy

of the highest barrier in the system [61], the system is free to ‘move’ to any

configuration by statistical processes (Fig. 6.4). Cooling the system rapidly traps

the system in one of these meta-stable states (marked with a black circle), meaning

it is not a true equilibrium, and a lower energy configuration may be found if the

system is cooled slower.

In the presence of finite temperature, the system has a chance to gain enough

energy from phonons, overcome the barrier and eventually find a lower energetic
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

E

Figure 6.3: Illustration of the typical energy configuration space of a disordered
system. After rapid cooling from a high temperature, the system configuration
(marked with a black circle) is trapped in a metastable state.

configuration. This process is the essence of glassy dynamics3.



E



E

a b

Figure 6.4: Illustration of glassy dynamics in the configuration space. At temper-
atures above the glass temperature TG, the system is determined as liquid, i.e. free
to move to any configuration (a). Below TG, the dynamics are ruled by thermal
activation over energy barriers to a lower-in-energy meta-stable state (b).

The rate of such a thermal activation process, λ, is exponential with T , follow-

ing an Arrhenius law -

λ = γE exp

(
− U

kBT

)
, (6.1)

where γE is the minimal rate of a single process in the system, U is the height of the

energy barrier, and kB is the Boltzmann constant. In a highly disordered system,

3The assumption that the only process is thermal activation is entirely true only in a group
of systems known as ‘strong’ glasses [52]. Many other glasses are ruled by additional processes
(such as diffusion), and are termed ‘fragile’. Since our system, the electron glass, presents ‘strong’
glass behavior, we will not elaborate on other types of glasses.
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the distribution of potential barriers is wide, hence, some processes might take an

extremely long time. Therefore, as is commonly seen in glasses, the relaxation

process continues even after decades [51] and millennia [62].

6.3 Logarithmic relaxation

The relaxation process of glass toward a better quasi-equilibrium occurs simulta-

neously by all degrees of freedom in the system (or equivalently, in all directions in

the multi-dimensional configuration space); hence, the overall measured relaxation

is a sum of many activation processes with all possible rates -

∆Ftot = δF0 ·
∑
λ

e−λt, (6.2)

where t is the time after an excitation, δF0 is the average contribution of each

relaxation process to the change in the value of interest, and ∆Ftot is the total

relaxation.

Assuming thermal activation as the relevant process driving the relaxations

(Eq. 6.1), as well as an approximately uniform density of energy barriers D in

a bounded spectrum interval between Umin and Umax, the distribution of rates is

given by [6]:

P (λ) = D · dU
dλ

=
D · T

Umax − Umin

· 1/λ ≡ C/λ. (6.3)

Considering macroscopical systems and taking Eq. 6.2 to the continuum limit,

the sum is approximated by a weight integral -
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∑
λ

e−λt =

∫ λmax

λmin

e−λtP (λ)dλ ≈ C [−γE − log(λmint)] (6.4)

with γE as the Euler-Mascheroni constant, and λmin and λmax as the lower and

upper cutoffs of the relaxation rate distribution, respectively [63].

This logarithmic relation is therefore a characteristic behavior of glassy systems

with a uniform distribution of barriers. An example of this behavior may be found

in the crumpled foils experiment presented in Fig. 6.5. In this experiment, a heavy

weight is placed on top of a pile of crumpled Mylar sheets, tissue foils or cotton

balls at t = 0, and the height of the pile is measured over time. As can be seen, the

relaxation process is perfectly logarithmic in the nylon and tissue cases, over seven

orders of magnitude in time (!). In the cotton balls case, however, the process is

faster than logarithmic, which implies a larger distribution of slow processes over

fast ones, leading to a different function for P (λ).

Figure 6.5: The height of a pile of Mylar sheets (main panel), tissue paper (upper
right inset), and cotton balls (lower left inset) - after placing a 200 gram weight
on top. The resulting height in all three cases shows slow relaxation even after
2 · 106 seconds (about a month). The two first experiments obey the logarithmic
dependence of Eq. 6.4 (Matan et al., 2002 [60]).
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6.4 Memory effect

Although slow relaxation is common to all glassy systems, other physical processes

that show such long relaxations periods in time yet are not related to glass dy-

namics exist, such as nuclear decay, chemical reactions, etc. Therefore, a better

fingerprint of glassy systems is the memory effect. In spite of other relaxing sys-

tems, in which a change in the physical conditions results in an independent, new

relaxation process, in glassy systems, the previous conditions are still imprinted on

the internal configurations of the system. Namely, even though the external param-

eters are very different, and the overall magnetization/conductance/pressure/etc.

are very different from the original ones, there are regions in the configuration

space that still hold information on the history of the glass.

The memory effect was first demonstrated in the spin-glass system [64, 65]:

A set of disordered spins is induced by a slow ac magnetic field H, while the

magnetization M is measured simultaneously. Starting above TG, the system’s

response shows zero out-of-phase susceptibility between H and M , χ′′. Then, the

system is cooled below TG and χ′′ rises to a finite value - the spins become ’stuck’

in a metastable state and cannot follow the ac magnetic field. Measuring χ′′ over

time (Fig. 6.6a) after cooling from a high T to below glass temperature shows

logarithmic glassy relaxation to a lower energetic (and therefore less responsive)

phase.

To observe the memory effect, one applies the following protocol: While cooling

the system, cooling is arrested at several intermediate temperatures below glass

temperature, T1, T2 < TG, for a significant time (relative to the cooling rate),

during which the glass continues to relax. Soon afterwards, the system is heated

back through T1 and T2 to TG. Throughout most of the heating process χ′′ follows
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its cooling curve. However, around the temperatures at which the cooling was

halted, χ′′ presents clear lower values, as depicted in Fig. 6.6b.

a b

Figure 6.6: Relaxation of the out-of-phase susceptibility χ′′ of CdCr1.7In0.3S4

sample, induced by an ac magnetic field (0.3Oe, 0.04Hz) below glass temperature
TG = 16.7K. a: χ′′ as a function of time after cooling from above TG to 12K at
different rates (circles - 2.6K/min, crosses - 0.08K/min, diamonds - 0.015K/min)
showing the logarithmic glassy relaxation. b: The memory dip protocol - cooling
from 25K to 5K, allowing the system to ’age’ for 7 hours at 12K and 40 hours at
9K (open diamonds), and heating it back up (solid circles) (K. Jonason et al., 1998
[64]).

This memory dip is well-explained by the configuration space picture: At each

temperature, the energy scale is different, and therefore the relevant region of the

potential landscape is also different. In other words, as long as the system was

not exposed to T > TG, it experiences a completely different landscape at every

T . Thus, the system is found in lower energy wells at configuration regions that

are related to T1 and T2. During re-heating of the sample, the spins are arranged

more easily at these values of T , and the resulting χ′′ is lower.
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6.5 Electron glass

Electron glass (EG) is a relative newcomer to the family of glasses (for reviews, see

Ref. [6, 7]). The electronic properties of strongly disordered interacting metallic

systems (Anderson insulators) exhibit glassy behavior, such as slow relaxation of

conductance and memory effects, like the glassy systems presented above. These

phenomena were first predicted theoretically several decades ago [66–70] and were

termed electron glass [66], as the glassy properties are attributed to conduction

electrons. Experimentally, a growing number of systems have been reported to

show such glassy behavior, including discontinuous Au [50, 71], amorphous and

poly-crystalline indium oxide films [72–77], ultrathin Pb and B films [78, 79], gran-

ular Al [80, 81], thin Be films [82], NbSi [83], Tl2O3−x [84], GeSbTe [85], and

discontinuous films of Ag, Al, and Ni [50, 86].

Conductance dynamics

Conductance in EG systems was shown to decay logarithmically in time after an

abrupt cooldown or an electrical excitation out of equilibrium, in accordance with

Eq. 6.4:

G(t) = G0 − S · log(t), (6.5)

where G0 is the conductance at t = 1 second after the excitation and S is the

slope of the logarithm. Two typical experimental observations of this conductance

relaxation are shown in Fig. 6.7.

The most common way to excite an EG system is to introduce it to gate voltage,

Vg, by field effect geometry (e.g. the MOSFET setup). A change of Vg instantly

alters the underlying potential, introduces or depletes electrons, and thus pushes

the system out of equilibrium (Fig. 6.8a). This causes conductance to abruptly
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a b

Figure 6.7: Panel a: Conductance as a function of time in an In2O3−x sample
after an abrupt change of gate voltage, showing a perfect logarithmic slope. Dif-
ferent plots are related to different source-drain electric fields (Z. Ovadyahu, 2006
[77]). Panel b: Conductance as a function of time in a granular aluminum thin film
sample, at different temperatures from 4.5K (top) to 20K, after an abrupt change
of Vg (T. Grenet et al., 2007 [81]). Inset: All curves collapse when normalized by
the initial conductance change ∆G0.

increase by an amount denoted as ∆G0, followed by a slow logarithmic relaxation

toward equilibrium (Fig. 6.8b).
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Figure 6.8: a: Illustration of the configuration space of an electron glass system
before (dark dotted blue line) and after (bright blue solid line) a gate voltage change
at t = 0. The system starts flowing to its new quasi-equilibrium immediately
after the Vg abrupt change. b: The associated conductance change at t = 0 and
logarithmic relaxation soon after.

This method enables good control of the glassy process, which serves as a

significant advantage over other glasses, as one can change Vg at any rate, in

any direction, and even apply sudden changes to it. Furthermore, it allows the

observation of a ’memory dip’ as a function of Vg at a fixed temperature [73, 76],
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as presented in Fig. 6.9. In contrast to spin-glass systems, in EG, one can scan

a whole range of gate voltages almost instantaneously, and effectively sample the

relaxation status in each case. These G(Vg) scans show the memory effect at the

specific gate voltage in which the glass was allowed to equilibrate and draw a dip

shape around it. This memory dip has been suggested as the hallmark of ’intrinsic’

EG [82, 87].

a b

Figure 6.9: Panel a: Conductance as a function of gate voltage in an In2O3−x

sample at varied temperatures from 4.11K (bottom) to 0.765K (top), showing the
memory dip effect (Z. Ovadyahu, 2006 [77]). Panel b: Conductance as a function
of gate voltage in a granular aluminum sample at 4K, showing a memory dip with
an amplitude of approximately 1% (T. Grenet et al., 2007 [81]).

In addition, due to the ease of controlling the applied gate voltage (in compar-

ison to variations in temperature) in EG systems, it is possible to explore the very

start of glassy relaxation in Eq. 6.5 after an abrupt change of Vg.

The amplitude of the change in conductance with Vg is usually a few percent

of the overall conductance, and may vary with the degree of disorder, carrier

concentration and ambient temperature.

Indeed, one may claim that conductance in glassy disordered metals is not a

good macroscopical measurement, since the current flows only in a sparse perco-
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lation network and does not sense the whole sample4. Furthermore, the measured

current through the system is carried by a macroscopical amount of electrons,

which flows at a relatively high rate in the percolation paths. Hence, extremely

slow relaxation is not directly related to the current electrons, but rather, is ruled

by a secondary process.

As is the case with many other open questions, the exact mechanism of con-

ductance relaxation and the glassy processes in the percolation network are still

under debate. Here, we suggest one common hypothesis: The current does indeed

flow in a dilute percolation backbone, but it is surrounded by many localized elec-

tronic sites separated from the current path. The electrons in these sites do not

contribute to the overall current, yet influence it by long-range Coulomb interac-

tions. When the gate voltage is changed, several electrons enter or escape these

sites, effectively changing the potential landscape in the main paths5.

Another basic question regarding EG dynamics is why does conductance in-

crease after an excitation? Based on Mott’s picture of variable range hopping

(Ch. 1.2), one can attribute the change of conductance to the higher density of

non-occupied states that are well above εF . As the system relaxes, the electrons

arranged below Fermi level, and conductance electrons have less neighboring free

sites to hop to. In addition (or alternatively), the Coulomb gap that was estab-

lished around εF (Ch. 1.4) reduces the DOS of the equilibrated system. Changing

Vg results in a change in the Fermi level, which effectively erases the Coulomb gap,

thus increasing G.

4Perhaps a better quantity to measure is the electrical capacitance, which is directly related
to the internal energy of the electrons [88]. Yet, due to the high resistance and capacitance of
the disordered samples, it is not practical with the current configuration, and is therefore not
included in the scope of this work.

5For a more detailed and quantitative description of this theory see Section 9.3 and Figure
9.7 below.
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Chapter 7

Experimental Techniques and Character-

istic Results of Conductance Dynamics

A measurement of the conductance of macroscopical samples in the range of several

kohm to several Mohms might not seem like a true challenge. However, signifi-

cant thermal noise and mesoscopic fluctuations might be an issue while measuring

highly disordered discontinuous films. In addition, in order to maintain the true

nature of the glass and not affect it with the external electric field, the applied

VSD must be maintained within the linear response regime, hence possibly causing

the signal-to-noise ratio to be significantly low.

Furthermore, as we will show in the next chapters, our results indicate that the

maximal temperature, Tmax, is a critical parameter in glassy systems. We therefore

had to use a unique fabrication method, the ‘quench condensation’ technique, to

evaporate our samples on cold substrates and measure them in-situ. For this

reason, using a cryogenic probe with temperature control is not enough, and we

had to also consider ultra-high vacuum (UHV) conditions for the evaporation.
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7.1 Experimental setup and instrumentation

Field effect geometry

Si (Gate)

SiO2 (Insulator)

Metallic
Sample

Wires

Au Contacts

Figure 7.1: Sketch of the sample and substrate configuration. The sample is
evaporated on the doped SiO2 layer between two pre-prepared Au contacts. The
bottom gate Si layer is connected from below to a voltage source, applying a high
electric field on the sample.

As mentioned above, a common excitation method of EG samples is chang-

ing a gate voltage. In our samples, gate voltage was applied using pre-prepared

conductive silicon substrates with a 100/500nm highly doped silicon-oxide (SiO2)

insulating layer on top. The sample was placed on the insulating layer, and a

voltage source was connected to the bottom part (see Fig. 7.1).

This configuration, which is similar to the metal-insulator-semiconductor-field

effect transistor (MOSFET), enables the application of high electric fields on the

sample due to this thin insulating layer. The doped SiO2 has a dielectric strength

of 9.5 MV/cm [89], that is, the maximal gate voltage which could be applied to the

100/500nm layer is ±95/450V, respectively. The width of the memory dip depends

on the temperature and resistivity, yet in most cases, applying up to ±20V in the

100nm case and ±100V in the 500nm case was enough to observe the whole dip

and the surrounding conductance ’background’.
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Cryogenic design and temperature control

Quarts crystal
Shutter

Sample holder
Thermometer
Heater

Si/SiO2 sample

Stainless steal cover

Vacuum KF sealing

Evaporation boats

Figure 7.2: Photograph of cryogenic probe. Temperature control allows the mea-
surement of temperature of a range between liquid He (4.11K) and room tempera-
ture (300K).

The samples were measured in a variety of temperatures, between 4.11 and

300K, by a designated probe (Fig. 7.2) that consisted of a stainless still vacuum-

sealed body, an oxygen-free copper sample-holder, silicon diode or platinum ther-

mometers (LakeShore DT-470/PT-100), and a heater resistor (50Ω, 0.5W). In

addition, for the quench-condensation process (see next chapter), an evaporation

boat was implemented at the bottom of the probe, connected by two external wires

to a high-power electric source. A quartz crystal was placed near the sample in

order to measure the evaporation rate.

The sealed probe was pumped out and immersed into liquid helium or liquid

nitrogen dewar (Fig. 7.3). The temperature was controlled by a LakeShore 330
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Figure 7.3: A Si/SiO substrate with pre-prepared Au contacts is placed on a
sample holder (in gray), situated on a high vacuum measuring probe, which is
immersed in to a liquid He bath. Thin films are evaporated through a shadow
mask (transparent layer in the sketch) and condensed on the SiO substrate (pink)
at cryogenic temperatures. A voltage source is connected to the Si layer (purple),
for the application of gate voltage (far left electrode). Source-drain voltage across
the sample is applied for conductivity measurement. Bottom: A scanning electron
microscope image section of a typical quench-condensed Au sample taken at T =
300K, illustrating the discontinuous nature of the film. The quenched disorder
in the geometry, combined with the long-ranged Coulomb interactions, leads to
frustration, which is at the heart of this system’s glassiness.

Temperature Controller, at a range between 4.11K (liquid helium) or 78K (liquid

nitrogen) up to room temperature, 300K, with a resolution of ±0.005K.

The probe is pumped prior to cooling by a rotatory oil pump to 10−3 torr,

and then by a cryogenic pump to 10−6 torr. This level of vacuum defines a mean-

free-path of the evaporated molecules of several meters [90], which allows direct

flow of the metal atoms through the 10cm path from the evaporation boat to the

substrate.

To seal the probe at these low temperatures, we have used CF vacuum connec-

tors with copper gaskets between them.
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Quench-condensation technique

The major part of the studied samples were prepared by quench-condensation

(QC), i.e. evaporation of a metal film on a substrate that is already held at

cryogenic temperatures and ultrahigh vacuum [50, 91, 92].

After the probe reaches the required temperature , an electric current is induced

in the evaporation boat, heating it to the evaporation point of the metal. The

metal vapor aggregates between the pre-deposited gold pads on the SiO2 substrate

through a shadow mask (see Fig. 7.3). Conductance is measured continuously

throughout the entire sample growth and measurement protocol, and allows the

fabrication of samples with resistances from a few KOhms up to several GOhms,

and at temperatures between 8 − 300K1. This technique enables exploring the

dependence of conductance properties on the working temperature, T , on the

temperature the sample was fabricated at, Tfab, and the highest temperature the

system was exposed to, Tmax (which was eventually found to be an important

parameter in conductivity dynamics) - without exposing the samples to higher

temperatures or to the ambient atmosphere.

Other samples were made by conventional fabrication methods at room temper-

ature using a thermal and e-beam evaporator, and were exposed to the atmosphere

prior to cooling and measurement. This method, in contrast to QC, enables pre-

cise control of the deposition rate (r) and chamber pressure (P ) which are found

to have great influence on film morphology.

The resultant films in both methods are discontinuous films of about 5nm

thickness, composed of clusters of grains organized in a strenuous geometric ar-

rangement, as shown in the bottom part of Fig. 7.3 (see also Fig. 8.5 below). Due

1Naturally, the heat produced by the hot metal vapor and radiation during the QC increase
the base temperature from 4.11K to about 8K.
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to the strong disorder of the films, the electronic states are localized and trans-

port is governed by hopping conductivity, following Efros-Shklovskii-type VRH

temperature dependence (Eq. 1.16), G ∝ exp(−T0/T )0.5, as depicted in Fig. 7.4.
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Figure 7.4: Conductance versus temperature of a discontinuous Au film (black
circles) and a fit to Efros-Shklovskii variable range hopping conductivity with T0 =
95K (orange dashed line).

Right after the fabrication (in the films made by QC) or cooling (in the other

films), conductance of the quench-condensed sample was allowed to equilibrate for

10 hours, after which the measurement protocol was applied.

Due to the repetitive form of glass with changing Vg, a sequence of several mea-

surements could be applied on every sample, at various temperatures. However,

since the logarithmic rate could be very slow at low temperatures, the protocol

included a period of heating to Tfab (or Tmax) between consecutive measurements.

Electronic setup

Conductance was measured by the two-probe method using either an ac or dc

current without apparent difference between the two. The vast majority of the

measurements was executed using an EG&G lock-in amplifier applying ac voltage

with an amplitude of 0.1/0.5V and frequencies of up to 17Hz. The lock-in was
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connected to the probe by BNC connectors and 75Ohm impedance coaxial cables.

A Keithley 2400 Source-Meter was connected to the silicon layer of the substrate,

applying dc gate voltage.

All three instruments (lock-in, voltage source and temperature controller) were

connected via GPIB cables to a National Instruments GPIB-to-USB converter (NI

GPIB-USB-HS), and were controlled simultaneously by an automated LabView-

programmed interface.

The grounds of all of the electrical measurement devices, including their cab-

inet, were connected directly to a wet ground outside the lab. This reduced the

overall noise to less than 0.1% of the measured conductance at 300K, and less

than 0.01% at lower temperatures. As noted before, the glassy effect amplitude is

around 1%, hence we faced significant noise at the higher temperatures.

7.2 Determination of the relaxation rate

Although the logarithmic slope of glassy relaxation does not bear a characteristic

timescale, several methods have been proposed to define the rate of glass dynamics.

In this work, we used two of these methods.

The logarithmic slope S

The natural parameter used to characterize the sluggishness of the system is the

logarithmic slope, S -

∆G ≡ G0 −G(t) = S · log(t) (7.1)

However, the memory dip amplitude significantly changes with T , presumably

due to thermal screening, hence comparing different temperatures can not be done
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directly. Based on the assumption that the relaxation process is a result of many

simultaneous small re-configurations of electrons in the metal, where each such

process contributes to the conductance decay an average amount denoted as δG,

and assuming that the thermal screening alters δG - we suggest that this tempera-

ture dependence of S can be eliminated with a simple normalization by ∆G0 (the

change of conductance at t = 1sec after switching from Vg1 to Vg2).

Namely -

s ≡ S

∆G0

, (7.2)

since the overall change of conductance is also directly related to this δG.

Indeed, to normalize the new formation of a dip with δG0 of a dip that was

formed at another T , or to compare the amplitude of two memory dips induced at

different temperatures (see next chapter), we have to also assume that δG0 does

not depend on their origin temperatures, and the only thing that changes between

the two is the normalized slope s. In other words, while measuring at a particular

temperature T , we assume that the only thing that characterizes the history of the

two memory dips is their amplitude, while the relaxation rate is related only to

T . This assumption underlies all EG experimental results in the last two decades.

Nevertheless, recent results of EG dynamics in AlO systems, observed by Delahaye

and Grenet, imply that this is not always the case, as in some cases, the two dips

have identical amplitudes but very different dynamic rates [93]. Thus, the current

understanding of EG dynamics is questioned, and further research must be carried

out to determine if this is a general behavior. This, however, is not in the scope

of the current work.

In order to make the measurements repeatable and the normalization by ∆G0

true, we used a strict protocol: Heating the sample to the maximal temperature for

teq = 5000sec at Vg1, cooling it to the required T , waiting 1000sec for stabilization,
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switching to Vg2 and determining the slope for another 5000sec.

An example of several normalized slope measurements is presented in Fig. 7.5,

showing s values between 11.4% and 3.25% per order of magnitude in time.
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Figure 7.5: Normalized conductance as a function of time after a change in Vg
of 4 different samples, showing relatively fast decay (black) and relatively slow
relaxations (blue).

The two-dip experiment

In some cases, it has been the custom to address a more intuitive measure of the

relaxation, i.e. a characteristic time for the relaxation process. Unlike exponential

or power law slopes, there is no well-defined value for the logarithmic process

(which originates in the uniform distribution of potential barriers), and another

method has to be used.

Here, we adopt a version of the ‘two dip experiment’ (TDE) suggested by

Ovadyahu et al. [77, 94]. In this protocol, the sample is allowed to equilibrate for

a long time teq under a gate voltage Vg1, leading to the build-up of a memory dip

centered around Vg1. The gate voltage is then abruptly changed to Vg2, leading to

an increase of conductance by an amount defined as ∆G0 (see Fig. 7.6). Then,

fast G(Vg) scans are performed at selected time intervals, showing the amplitude
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growth of the new memory dip around Vg2 over time. The characteristic relaxation

time, τ , is defined as the time in which the amplitudes of the new dip ∆G(t) equal

∆G0/2.
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Figure 7.6: Conductance as a function of gate voltage at selected times after
switching Vg from Vg1 = 20V to Vg2 = −20V. The black curve shows the initial
memory dip at Vg1, with a new dip growing around Vg2. The scan time here is 30
seconds. In the inset, the amplitude of the dips is plotted versus time, showing the
logarithmic decay. The characteristic time τ is the time at which the amplitudes
cross each other, about 15000 seconds.

This definition of τ is only a relative measurement of the timescale, and does

not bear any immanent physical value, since logarithmic relaxation does not stop

even after few millions of seconds (weeks).More specifically, ∆G0 is set by the time

period at which it was allowed to equilibrate at Vg1, teq, by the same logarithmic

relation. Therefore, comparing the new dip to the amplitude of the old one does

not give any information on the more physical parameter, S.

Another drawback of TDE is the time needed to scan the whole range of gate

voltages. Due to the capacitance between the sample and the gate, the minimal

scanning time, tscan, is about 10 seconds. During this period, a part of the new

dip at Vg2 is erased.
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The above two effects were shown to set a constant τ , which is determined

only by the experimental procedure [6, 95]. If we assume the system relaxes for teq

seconds at Vg1, a dip is formed with an amplitude of -

∆G0 = S · log (teq) . (7.3)

Starting the measurement at t = 0, a new dip beings to establish at Vg2 with

the same rate. While scanning the gate voltage at time t, the amplitude of the

observed new dip with time is equal to -

∆G(t) = S · log (t)− S · log (tscan) = S · log

(
t

tscan

)
. (7.4)

The new dip will satisfy the TDE condition after τ seconds, i.e. -

S · log

(
τ

tscan

)
=
S · log (teq)

2
, (7.5)

leading to the following constant value of τ , which is in fact independent of S:

τconst =
√
teq · tscan. (7.6)

Nevertheless, this trivial result is true only if the first and second dips were

formed under the same physical conditions. Since S is temperature-dependent,

TDE can provide useful information if the first dip is built at a higher tempera-

ture T2 and the second dip at T1. The characteristic time τ in this case reflects the

ratio between the timescales at the different temperatures, and consequently holds

information on the relative dependence of the slope on temperature S(T1)/S(T2).

The results from a variety of temperatures provide information on the relation

between glassy dynamics and temperature S(T ). This relation at different tem-
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peratures is the main goal of the next two chapters2.

In our measurement protocol, the samples were heated for a period of teq = 10

hours to Tmax in Vg1, and were then cooled down to the measurement temperature

T . Subsequent to a short stabilization period, the gate voltage was swiftly scanned

and then fixed on Vg2. This first scan indicated the amplitude of the dip, which

formed at Tmax at the measurement temperature ∆G0. Other fast Vg scans were

performed at chosen times, tprobe, introducing the development of the new dip.

The amplitude of this new dip, ∆G(t), was compared to ∆G0, and the time at

which ∆G(t) was equal to ∆G0/2 was defined as τ (see inset of Fig. 7.6).

7.3 Extrapolation of τ

As the temperature is lowered, glass dynamics slow down considerably (see Eq.

8.1 in the next chapter), and it becomes impractical to wait for the new dip to

realize the condition of ∆G(t) = ∆G0/2. Therefore, we determined the value of τ

by an extrapolation based on the logarithmic growth of the peak amplitude with

time.

Considering the glassy logarithmic slope (Eq. 6.5), one may presume that the

new dip’s amplitude at tprobe would be equal to S · log(tprobe). However, as was

discussed earlier, during the scan time, a fraction of this amplitude is erased, and

the resulting amplitude follows -

∆G(tprobe) = S log(tprobe)− S log(tscan). (7.7)

2The TDE and the direct observation of conductance evolution in the previous section with
normalization via ∆G0 (Fig. 7.6) are very similar, and are both based on the assumption that
the dynamics of a dip at T1 do not depend on T2, as mentioned above.
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Hence, extracting S from this relation is possible by:

S =
∆G(tprobe)

log(tprobe/tscan)
. (7.8)

On the other hand, the initial amplitude of the ’old’ dip, ∆G0, is also not the

true one, as it was also erased by S log(tscan), i.e. -

∆Geff
0 = ∆G0 + S log(tscan). (7.9)

τ is the time at which ∆G(t) equals ∆Geff
0 /2, hence:

S log(τ) =
∆Geff

0

2
=

∆G0

2
+ S log(tscan), (7.10)

and by using the above expression for S, we have -

∆G0

2
= S log

(
τ

tscan

)
= ∆G(tprobe) ·

log (τ/tscan)

log(tprobe/tscan)
. (7.11)

Therefore, the characteristic relaxation time may be calculated using the fol-

lowing expression:

τ = tscan exp

[
log

(
tprobe
tscan

)
· 2∆G(tprobe)

∆G0

]
. (7.12)

This is the process that was employed to determine τ in Fig. 9.4, 9.5, 9.6 and

9.8, where τ was averaged in several Vg scans at different tprobe.
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Chapter 8

The Effect of Maximal Temperature on

EG Dynamics

In this chapter, we present a study of the conductance relaxation of electron glass

Au, Ni and Ag samples that were fabricated at low temperatures. The results

suggest that under the right conditions, glass can also possess a different type of

memory. Remarkably, the dynamics have been found to be dependent not only on

the ambient measurement temperature, but also on the maximum temperature to

which the system has been exposed. Hence, the system ‘remembers’ its highest

temperature.

As we discuss below, this effect may be qualitatively understood in terms of

energy barriers and local minima in a configuration space, and may therefore be

a general property of the glass state.

This study was recently published in Physical Review Letters, in collaboration

with T. Havdala, J. Delahaye, T. Grenet and A. Amir [49].

Introduction

As we have mentioned earlier, a glassy system is often characterized by a typical

glass temperature TG, below which its dynamics slow down dramatically. The
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sluggishness is attributed to multiple local minima separated by energy barriers in

the configuration space. At high temperatures, the system can explore the entire

configuration space and is thus ergodic. As the temperature is lowered below TG,

the system becomes trapped in a subsystem of metastable states and is no longer

ergodic.

In EG, however, glass temperature was never discovered. Prior to the current

study, electronic glassy effects were measured only between 2K to 30K, but no

slow-down of the dynamics was observed. For this reason, TG was suggested to be

T = 0, similar to quantum phase transitions [77].

This study explores a situation where glass never had the chance to ‘visit’ the

entire configuration space: What is the temperature dependence of the dynamics

if the system is prepared in a glassy state and is ‘born’ non-ergodic?

We investigate the dynamics of electron glass systems fabricated using the

quench-condensation technique, which enables the preparation of glassy systems

at cryogenically low temperatures. Studying the temperature dependence of con-

ductance relaxation as a consequence of gate voltage excitation under these con-

ditions reveals a striking effect: The dynamics are found to be dependent not only

on the working temperature, but they are also strongly affected by the maximal

temperature at which the sample was allowed to equilibrate.

8.1 Results

In the following section, we present results of the conductance dynamic in thin

metal films with a variety of resistances and at temperature ranges between 4 and

300K. The experimental procedure followed both the TDE protocol and the direct
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slope measurement. First, to examine the effect of Tmax on the dynamics, we tested

the same system before and after heating to a new Tmax.

In Fig. 8.1a, we present the memory dip amplitude as a function of time for

a discontinuous Au film that was prepared at T = 140K (black squares). A clear

logarithmic slow relaxation of conductance was observed, consistent with Eq. 6.5.

Heating the sample to 170K for ∼1600sec and cooling it back down had a relatively

small effect on resistance (∼20%), indicating that there is no great change in the

microstructure; however, it was found that the dynamics slowed down dramatically.

The slope of the logarithmic curve was found to be decreased by a factor of 3 as

a result of the heating-cooling cycle (blue circles). Repeating this process had no

further effect on the dynamics (green triangles), demonstrating that it is the first

heating to T = 170K that has the remarkable influence on the relaxation.

A related finding is shown in Fig. 8.2, depicting conductance relaxation of

a series of samples that were heated to various maximal temperatures Tmax for

relatively long periods, and cooled back to T=130K, such that the resistance

R130K ∼ 100MΩ for all samples. One can see that the slope of these curves s

increases monotonously with Tmax and can be approximately described by:

s ∝ T

Tmax

, (8.1)

as is illustrated in the inset.

Apparently, the system remembers that it was exposed to temperature Tmax.

The higher this temperature, the slower the dynamics are at T < Tmax. Evidently,

the highest temperature experienced by the sample is encrypted in the dynamics

of the system.

This behavior was observed in samples spanning a large range of fabrication

temperatures. The dependence of s on the measurement temperature T , for three
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Figure 8.1: a: ∆G = [G(t)−G0] /∆G0 as a function of time for a discontinuous
Au film that was excited out of equilibrium at 140K. The black squares indicate
the initial curve in which T = Tmax = 140K (R = 2MΩ). The blue circles depict
conductance versus time measured after the sample was heated to 170K and cooled
back to 140K, thus defining Tmax = 170K (R = 2.4MΩ). The green triangles
show the results after a second heating-cooling cycle. The experimental protocol is
illustrated in panel b.

discontinuous Au films prepared at different temperatures and accordingly having

different Tmax - can be seen in Fig. 8.3. Once again, the dependence of the

dynamics on both T and Tmax is evident. For all three samples, s ≈ 7 at T = Tmax,

and it decreases considerably as T is lowered. The slope was found to be a function

of T/Tmax, and it roughly follows Eq. 8.1.

Similar s(T ) curves to those shown in Fig. 8.3 were obtained for over 20 Au

samples, with resistances ranging between a few kohms to several hundred Mohms,

and sizes ranging from 20×50 µm to 7×7mm. Circa half of them were fabricated

at room temperature and exposed to air prior to measurement (3 such samples

are presented in the appendix below), while the rest had various lower Tmax. We

observed similar results in 4 quench-condensed Ni films and 2 Al films. Similar to
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Figure 8.2: Conductance relaxation over time, measured at T = 130K for four
discontinuous Au films having Tmax of 150K (bottom black line), 200K (red line),
250K (green line) and 300K (top blue line). For all samples, resistance at T = 130K
was ∼100MΩ. Inset: The slope of the G(t) curves (s = S/∆G0 ) as a function of
T/Tmax for the four samples, demonstrating the dependence of Eq. 8.1.

other EGs [6, 7], we observed no dependence of s on the cooling rate within the

experimental abilities, in contrast to other types of glasses.

It is important to note that a film grown on a cryo-cooled substrate is amor-

phous, while samples fabricated or heated to room temperature may indeed be

crystalline [96]. However, we did not observe any difference in the results obtained

on different samples that were prepared at different temperatures. This is consis-

tent with the conjecture that conductance is governed by hopping between islands

in the discontinuous sample, and not by the atomic order in the islands.

8.2 Discussion

The fact that the dynamics depend strongly on T is naturally understood in terms

of energy scales of the potential landscape versus thermal energy (see Eq. 6.1). But

how can one understand the dependence on Tmax? We suggest an explanation that
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Figure 8.3: The conductance relaxation slope, s, as a function of temperature T
and of T/Tmax, for three discontinuous Au films with a Tmax of 12, 100 and 290K,
from left to right, respectively. All samples were allowed to equilibrate at Tmax for
several hours and were then cooled down to T just before measurement. The dashed
line marks the experimental limit in a large s which is set by the measurement
protocol (Eq. 7.6).

may be generic to glassy systems prepared at temperatures in which the system is

already glassy.

A general property of glass is that the presence of interactions may cause

the system to be trapped in metastable states in the configuration space. The

energy barriers between these states have a wide distribution, which leads to a slow

relaxation process toward equilibrium over many orders of magnitude. Heating the

glass to a higher temperature exposes the system to an even wider distribution

of barriers, and consequently causes the relaxation process to become slower after

the sample is cooled back down to a lower temperature.

Considering the exact assumption of Eq. 6.4 for conductance dynamics, i.e.

thermally activated simultaneous processes with uniform distribution, leads to the
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following relation -

∆G(t) ∝
∑
λ

e−λt =

∫ λmax

λmin

e−λtP (λ)dλ ≈ C [−γE − log(λmint)] , (8.2)

where, as was mentioned earlier, λmin and λmax are the minimal and maximal

rates in the system, and γE is the Euler-Macheronni constant. As in Eq. 6.3, C is

proportional to the density of the energy barrier.

As the system relaxes toward lower energy values, each relaxation lowers the

conductance by an amount δG, namely

G(t) = G0 − δGC · log(t), (8.3)

where δG may also depend on the temperature. In order to eliminate this non-

universal dependence, it is sensible to normalize the slope by ∆G0, since:

∆G0 =

∫ λmax

λmin

δGP (λ)dλ = CδG log

(
λmax

λmin

)
≈ CδGU/T. (8.4)

Thus, we find that the normalized conductance relaxation ∆G(t) = (G(t) −

G0)/∆G0 scales logarithmically, with a slope proportional to T/U .

Again, we note that this analysis is based on several assumptions: (A) a uniform

distribution of energy barriers, (B) each microscopical process equally contributes

to the overall conductance change, δG, and (C) δG depends only on the ambient

temperature and not on the thermal history of the sample. As far as we can tell,

these assumptions are fully supported by the experimental results.

The experimental results indicate that for our systems, which were prepared

at a low temperature (below TG), and therefore never had the chance to explore

large parts of the configuration space, the relevant energy scale of the barriers is

107



𝑼

𝝋

𝑘𝐵𝑇1

a MeasurementFabrication

c Measurement

𝑼

𝑘𝐵𝑇2

𝝋

𝑘𝐵𝑇1

Heating and Cooling

𝑼

𝝋

𝑘𝐵𝑇1
𝑇𝑚𝑎𝑥

𝑼

𝑘𝐵𝑇2

𝝋

𝑘𝐵𝑇1

𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥

b

d

Figure 8.4: Sketch of a section of the potential landscape in phase space. The
black solid lines describe the landscape in its initial state. Applying a gate voltage
changes this potential line (green dashed lines) and ignites a relaxation process. For
all steps, the system tends to minimize its free energy, i.e. to thermally equilibrate
to a configuration with the lowest possible potential. At the first stage (a and b),
accessible energy is bounded by the barriers of the order of fabrication temperature
T1. Heating to a new maximal temperature T2 results in the system exploring
deeper potential wells, and is hence characterized by slower relaxation processes
after recooling to T1, as is discussed in the main text (c and d).

U ∝ Tmax; hence, the distribution of relaxation depends on Tmax. Since thermal

activation also dominates relaxation processes at a lower temperature T , we obtain

a logarithmic relaxation with the slope: snew = W · T
Tmax

, as is indeed depicted in

Fig. 8.1, 8.2, 8.3 and 8.5, and is expressed in Eq. 8.1. The factor W depends

on the waiting time at T = Tmax, teq, which was kept constant throughout the

measurements.

An intuitive way to understand this result is to consider a simple potential

landscape in the phase space, illustrated in Fig. 8.4, undergoing the following

sequence of events:

a. The system is prepared at temperature T1. Here the electrons are limited to

exploring potential wells in the configuration space that are separated by barriers,
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U , where U ∝ kBT1.

b. The system is excited by a gate voltage change at t = 0, thus modifying the

underlying electronic potential landscape. The relaxation is dominated by barriers

whose magnitude is set by kBT1.

c. The system is heated to Tmax = T2 > T1. This enables electrons to enter

deeper wells separated by higher barriers proportional to kBTmax. Upon a sequen-

tial cool down, the system is frozen in regions of phase space with larger potential

wells

d. After excitation of the system, relaxation is now dominated by barriers

whose magnitude is set by kBTmax, and the dynamics slow down considerably.

8.3 Intrinsic or extrinsic?

As we presented above, and in following with many previous studies, conductance

dynamics in electron glasses are argued as driven by ‘intrinsic’ effects, menain-

ing, processes that are governed by conduction electrons [82, 84, 87]. Yet, one may

wonder whether the above temperature dependence is related to ‘extrinsic’ pro-

cesses ,since heating the sample may affect the microstructure of the films. The

experimental findings, however, show that morphology change does not affect the

temperature dependence of the dynamics.

Fig. 8.5 shows 3 discontinuous Au films having the same Tmax but very different

geometries due to different preparation conditions.

The three samples were fabricated at T = 300K (thus defining Tmax = 300K

for all three) under different evaporation conditions, using a standard evapora-

tor (i.e. not the QC technique). The lower panels of the figure depict scanning
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electron microscope (SEM) images of the three samples, clearly showing that the

microscopic geometry is significantly different. Specifically, the grain average size

and inter-grain spacing vary from sample to sample.

The upper panels show the logarithmic slope s of the conduction relaxation,

following an abrupt excitation as a function of temperature. It is seen that s(T ) is

similar for the three films. This result demonstrates that glassy properties, and the

temperature dependence of the relaxation rate in particular, are relatively insen-

sitive to film microstructure or geometry details. We therefore conclude that the

dependence of s(T ) on Tmax presented in the main text is not related to ‘extrinsic’

morphology variations, but rather originates from ‘intrinsic’ electronic processes.
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Figure 8.5: Upper frames: The slope of the conductance after an abrupt change
in gate voltage, s, as a function of temperature for three Au films with Tmax = 300K.
The samples were evaporated under different partial pressures in the evaporation
chamber (p) and evaporation rates (r), as follows: a: p = 2 · 10−7mb, r = 0.4nm/s;
b: p = 5 · 10−7mb, r = 0.1nm/s. c: p = 2 · 10−6mb, r = 0.05nm/s; Lower frames:
The corresponding SEM micrographs of the samples.
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8.4 Conclusions

Naturally, temperature is a crucial quantity in determining the dynamics of a

glass. In recent years, a number of nontrivial effects of temperature have been

reported, such as rejuvenation memory [97, 98], temperature chaos [54, 99], cool-

ing rate memory effects [64, 65], and possible cooling-induced sample maturing.

The dependence of glassy properties on the highest temperature Tmax presented in

this study is a novel, intriguing temperature effect, which demonstrates that the

dynamics of a glass can reveal the glass’s highest temperature. This is made pos-

sible by use of the quench-condensation technique which enables the preparation

of samples at temperatures in which the system is already glassy. This unique

memory may be a general feature of glasses prepared at T < TG, in which the

sample could only explore a limited fraction of the configuration space. In a sense,

Tmax takes the role of an effective TG in controlling the relaxation processes of the

glass. It would be interesting to explore additional glasses to discover the regime

of applicability of this novel phenomenon.
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Chapter 9

Crossover from Classic to Quantum Glassy

Dynamics

As was shown in the previous chapter, in discontinuous metallic films, the char-

acteristic relaxation time slows down dramatically with decreasing temperature.

Here, we show that this process is limited to relatively high temperatures, above

∼0.5Tmax. Below this point, the dynamics become temperature-independent. We

discuss these results and attribute them to a crossover from thermally activated

to quantum tunneling dominated relaxation processes. We present a model that

suggests that the temperature range of the experiments (which is proportional to

Tmax), as well as the sample microstructure, determine the relevant statistics and

scales of the energy barriers governing the electronic properties of the system.

This part of the work is a direct continuation of the results from the previous

chapter, and is currently in preparation for publication in a peer-reviewed journal.
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9.1 Introduction

In contrast to temperature dependence in other glassy systems and in the results

presented in Chapter 8, in previous results in high carrier concentration indium

oxide [100] and in granular aluminum films [81], τ was found to be independent of

T , and in low carrier concentration indium oxide, it was reported to even decrease

with a decreasing T (see Fig. 6.7b and Fig. 9.1) [100]. These results were taken

as an indication of the importance of quantum effects, in which the barriers are

overcome by quantum-mechanical tunneling rather than thermal activation. One

can expect tunneling to dominate the relaxation of any glass at sufficiently low

temperatures. Apparently, in indium oxide and granular aluminum, tunneling

is the dominant mechanism for electronic relaxation up to the highest studied

experimental temperature (∼30K).

Figure 9.1: Conductance relaxation after Vg change at different temperatures - in
low carrier concentration In2O3−x (a), and high carrier concentration In2O3−x (b)
(see text) (Z. Ovadyahu, 2007 [100]).

In contrast, recent experiments on NbSi [83] (Fig. 9.2) and discontinuous metal

films [49, 50] (see previous chapter) performed up to T = 300K, showing a clear

temperature dependence of the dynamics, which slow down as the temperature
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decreases, though the effect of T was different for the two systems. Specifically, as

demonstrated in the previous chapter, in discontinuous Au films, the characteristic

relaxation slope was found to follow s ∝ exp{Tmax/T}, where Tmax is the highest

temperature experienced by the sample (Eq. 8.1).

Figure 9.2: Conductance relaxation after Vg change to Vg2 at 4.2K, after a period
of 20000 seconds with Vg1 at 20K (black), 9K (red) and 4.2K (blue). At higher
temperature the memory dip amplitude is higher, indicating temperature-dependent
glass dynamics (J. Delahaye et al., 2014[83]).

In this chapter, we present comprehensive results on the temperature depen-

dence of the dynamics of discontinuous Au films in a wide temperature range

below room temperature (300K). Our main finding is that the dynamics follow

Eq. 8.1 only for a limited temperature range below 300K, and at a low enough

temperature, the dynamics become temperature-independent. These results are

interpreted as a crossover from classic to quantum glassy behavior, where the

crossover temperature depends on the film microstructure and on the sample fab-

rication temperature, Tfab, which plays the role of Tmax if the sample is not heated

beyond this temperature. This explanation is also in agreement with earlier results

on In2O3−x and granular Al, as they were made at room temperature or above,

and were cooled to the quantum regime prior to measurement.
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Experimental methodology

Similar to the samples presented in Chapter 8, part of the films in this study

were made utilizing the quench condensation-technique, and the other part via

conventional room temperature evaporation. However, in contrast to the previous

chapter and due to convenience reasons, in this study we used the two-dip experi-

ment (TDE) to extract the characteristic time τ , as was defined in the last section

of Chapter 7.2. The relation between the two measurements protocols is as follows

(see Eq. 7.11):

s =
S

∆G0

=
1

2 log
(

τ
tscan

) , (9.1)

where tscan is about 10 seconds.

The samples here were made at Tfab, which is effectively the maximal tempera-

ture they were exposed to (i.e. Tmax = Tfab), and were then allowed to equilibrate

for 10 hours at Tfab before each measurement.

9.2 Results

Fig. 9.3 depicts the time-dependent evolution of a new memory dip at 6 different

temperatures for a discontinuous Au with Tfab = 290K. It can be seen that

cooling from T = 240K to T = 125K results in a significant slowing down of the

dynamics. Additionally, τ increases from 104s at 210K to 108s at 125K, clearly

demonstrating the temperature dependence of EG dynamics. Interestingly, further

cooling to T = 80K has very minor influence on τ . The full dependence of τ on T

depicted in Fig. 9.4 exhibits the following features: (i) a narrow plateau around

115



-30 -20 -10 0

 

 

 

 

-30 -20 -10 0
 

  

 

-30 -20 -10 0

 

 

 

 

-30 -20 -10 0

 

 

 

 

-30 -20 -10 0

100

80

60

40

20

0

 0 sec

 2000 sec

 10000 sec

 50000 sec

 

  

 

210K

𝑉𝑔 𝑉


G
%

185K

165K 125K 80K

a b c

d e f

-30 -20 -10 0

100

80

60

40

20

0

 

 

 

 

240K

Figure 9.3: Normalized conductance change as a function of gate voltage for
different times after a gate voltage change from +20V to −20V . This thin Au
layer was heated to room temperature for 10 hours, and cooled to various tem-
peratures prior to measurement. ∆G0 was found in measurements a-f to be
0.59%, 1.42%, 1.61%, 1.58%, 1.6% and 1.35% of G0, respectively. It is noteworthy
that ∆G0 was found to be approximately temperature independent below 165K. At
the higher temperatures, the new dip reached 50% of ∆G0 after τ∼2500sec, while
extrapolation of memory dip at lower temperatures led to τ which is higher than
1010sec, showing the slow down of the glassy dynamics.

Tmax for which τ ∼ 1200s, (ii) a sharp increase with decreasing temperature, and

(iii) temperature independence at low T.

Feature (i) results from the measurement procedure and it is the trivial time

for the TDE, protocol where the first and second dips are formed at the same

temperature with a waiting time of 10 hours and a scan time of about 10sec. At

temperatures that are very close to Tfab, the finite scan time limits the minimal τ

to this value, since very fast processes cannot be measured.

Feature (ii) represents the exponential slowing down of the dynamics with T

typical of classic glasses, as was shown in the previous chapter (Eq. 6.1).

Feature (iii), the low temperature saturation of τ with T , may be interpreted
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Figure 9.4: The characteristic relaxation time of the Au sample presented in Fig.
9.3, as a function of temperature. The dynamics show the exponential slow down
at the higher T , and a saturation below a certain crossover temperature, Tco.

as a crossover from a thermally activated to tunneling dominated regime of the

relaxation processes as we discuss below. Similar results were observed in over 10

Au samples.

For the sample of Fig. 9.3 and 9.4, the crossover temperature, Tco, from acti-

vated to saturated behavior of τ , is ∼ 150K. One may wonder what determines

this value? A clue to this question may be found in Fig. 9.5 which shows τ versus

T for 3 different Au films grown at 300K under different evaporation conditions.

As discussed above, the SEM pictures show that the microstructure of the discon-

tinuous Au is strongly affected by the deposition rate (r) and the partial pressure

(P ) in the deposition chamber. As the vacuum and deposition rate are reduced,

and the typical cluster size as well as the width of the gaps between clusters grow,

the temperature-dependent dynamics are also changed. The thermally activated

region of the dynamics grows with the cluster/gap size, leading to an increase

in the saturation value of τ . Eventually, for the largest cluster-sized sample, the

low temperature τ becomes too large to be measured, and the crossover to the

saturation of the τ(T ) curve becomes experimentally inaccessible.

An additional parameter that influences the temperature dependence of the
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Figure 9.5: Temperature dependence of τ (left panel) and the corresponding
SEM micrographs (right) for three discontinuous films prepared at room temper-
ature under different chamber pressures, P , and deposition rates, r. THe green
triangles and top micrograph are for P = 2 · 10−6mb, r = 0.05nm

s
. The red circles

and middle micrograph are for P = 5 ·10−7mb, r = 0.1nm
s

. Blue circles and bottom
micrograph are for P = 2 · 10−7mb, r = 0.4nm

s
. The typical barrier widths W are

extracted from an image analysis of the three micrographs and were found to be:
W ∼ 11.18, 9.25, and 7.98nm, respectively.

relaxation time is the fabrication temperature, Tfab (or equivalently, Tmax). Fig. 9.6

presents τ(T ) curves for 3 samples fabricated using the QC method at different Tfab.

Though the qualitative curve is similar for the three films, the saturation value of

τ grows with Tfab. In addition, the crossover temperature Tco is also found to grow

monotonously with the fabrication temperature, and roughly follows Tco ∼ Tfab/2.

9.3 Discussion

The observed temperature dependence is naturally interpreted as a crossover from

a glass that is dominated by thermal activation processes to a glass that is domi-
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Figure 9.6: Characteristic relaxation time τ as a function of temperature for three
discontinuous Au films having Tfab of 12K (purple hexagons), 100K (orange trian-
gles) and 290K (pink diamonds), fabricated using the quench-condensation tech-
nique. All samples show a crossover from an exponential with T (classic) regime
and an independent (quantum) regime, while the crossover temperature Tco is pro-
portional to Tfab/max, as predicted by Eq. 9.5 (see text).

nated by tunneling processes. As the temperature is lowered and the relevant en-

ergy barriers in the phase space become increasingly larger, it becomes more likely

for the many-body interacting electronic system to tunnel between metastable

states rather than to be activated by a phonon above them. One may ask why this

crossover is uniquely observed only in discontinuous metal films - why has it not

been observed in other EGs? In the following subsections, we suggest a model to

explain the findings and the conditions for observing the classic-to-quantum glass

crossover.

Model

The correlation between the dynamics and granular geometry illustrated in Fig.

9.5 leads us to suggest that the properties of the glassy temperature dependence are

governed by charging energies in the metallic islands and by the width of the gaps

between them. The microscope images show that the system consists of a large
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number of islands with varying sizes, separated by relatively thick (several nm)

barriers. The tunneling matrix element between neighboring grains is exponential

in the gap width, W , leading to a broad distribution of hopping rates between

grains, which are proportional to exp (−W/ξ), where ξ is a localization length.

Due to the exponentially different hopping rates, it is plausible that the relevant

paths for conduction through the system consist of a complex network that may

be described via the framework of percolation theory [13, 101, 102]. Conductivity

through the main percolation paths is affected by adjacent charged islands. Chang-

ing Vg changes the potential landscape of the glass, which in turn drives electrons

into or out of these nearby islands. Relaxation processes may involve simultane-

ous tunneling of many electrons in this complex network, making the treatment of

such a model extremely complicated. Here, with the welcome help of A. Amir1, we

present a more quantitative analysis of a particular and relatively simple process:

Single tunneling between two grains through an intermediate, smaller grain (see

Fig. 9.7), which undergoes a crossover from thermal activation to elastic (quan-

tum) co-tunneling as a function of T . This process possesses several properties

consistent with the experimental data, namely:

1. At high temperatures, the rate of the process is governed by thermal acti-

vation, with an activation energy proportional to the fabrication temperature.

2. At low temperatures, the rate saturates to a temperature-independent value,

which is related to the microstructure geometry.

3. The crossover temperature between the two regimes, Tco, is proportional to

the fabrication temperature.

1The following calculations are based on an extension of Eq. 6.4 and on Ref. [6], a the case
where relaxation rates and probabilities depend also on the distribution of gaps between metallic
islands
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20 nm

100 nm

Figure 9.7: Illustration of the process of relaxation via a small intermediate quan-
tum dot: The image shows an scanning electron microscope picture of one of the
gold films after thresholding the image. The colored grains (schematically) show
the percolating backbone, which supports most of the electronic conduction. At
high temperatures, a charge may be trapped on the large quantum dot A, affecting
the conductance in grain C. In order to diffuse out of dot A, it is favorable for this
charge to pass through dot B. This can occur either through thermal activation or
through quantum tunneling, depending on the temperature.

Crossover temperature

Consider a system that was fabricated at Tfab and allowed to equilibrate. All

islands with charging energy EC comparable to (or smaller than) Tfab can be

occupied (B in Fig. 9.7) and affect the conductivity in the grains, which are part

of the percolation backbone (C). Following a temperature decrease, electrons can

be trapped on islands separated from the percolating backbone (A) by these small

islands with charging energy EC ∼ RT. At T � Ec, this charge is Coulomb-

blocked and is forbidden from re-entering the intermediate quantum dot B.

The relaxation process in which the trapped electrons will be ‘freed’ can occur

in two ways: Electrons may receive enough energy from thermal phonons to enter

into B, and from there tunnel to C; alternatively, at arbitrarily low temperatures,

the electrons may co-tunnel through dot B. The latter process can occur either

via elastic or inelastic processes.

It was found [103], up to coefficients of order unity, that for T � Ec, the
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conductances corresponding to these processes are:

σactivation ∼
GLGR

GL +GR

Ec
T
e−Ec/T , (9.2)

σinelastic ∼
GLGRT

2

e2/hE2
c

, (9.3)

σelastic ∼
GLGRδE

e2/hEc
, (9.4)

where RQ is the quantum resistance, GL/R are the conductances between the dot

and the left/right lead, respectively, and δE is the level spacing.

The characteristic level spacing corresponds to a metallic quantum dot with the

typical size of 100nm, and GL,R can be estimated within a WKB approximation,

considering a typical gap spacing of 5nm and inter-gap potential of several eV (the

work function of the metal). For these parameters, elastic tunneling or thermal

activation always dominate over the contribution of inelastic tunneling, which can

therefore be neglected.

One should note that while the rate of the thermal process is proportional to

|M12|2|M23|2
|M12|2+|M23|2 , where Mij is the relevant tunneling matrix element, co-tunneling is

of higher order in the matrix elements, proportional to |M12|2|M23|2. Due to the

thick barriers between grains, the rates for co-tunneling can be smaller by several

orders of magnitude. Despite this, at sufficiently low temperatures, the exponential

suppression of the thermally activated processes will lead to co-tunneling being the

dominant process.

Hence, we expect a crossover from a thermally activated regime (Eq. 9.2) to

a temperature-independent regime (Eq. 9.4). The crossover temperature can be
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readily found by equating the two equations, leading to:

Tco ∼ Ec/ log

(
E2
c

TcoδE
· e

2/h

2G

)
. (9.5)

Since the relevant charging energies are of the order of the fabrication tempera-

ture Tfab, this model predicts a crossover between the two regimes at a temperature

that is in the scale of Tfab, which is measurable in our discontinuous metallic films..

Moreover, we can conclude that Tco should be proportional to Tfab (up to

logarithmic corrections). This relation is indeed observed in 3 samples grown at

different temperatures, presented in Fig. 9.6.

Quantum regime

Experimentally, the relaxations appear to be approximately logarithmic, both in

the case where they are temperature-dependent (classical, thermally activated)

and in the temperature-independent (quantum tunneling) regime. This implies

that the exponential dependence of the rates on the separation (gap) between the

grains has to be significant: In the quantum regime (see Eq. 9.4) the charging

energies only enter polynomially, while in order to have logarithmic relaxations,

one needs to have an exponential dependence on the parameter, which can only

be accounted for by the exponential dependence of the prefactor G on the oxide

barrier thickness.

For this reason, we can neglect the polynomial dependence on Ec in the quan-

tum tunneling regime. We assume that G ∝ e−x/ξ (with x as the gap thickness

and ξ as the lengthscale associated with the exponential decay of the wavefunction

in the gap, which is related to the work function of the materials involved)), and

that the distribution of x is uniform in the interval [0,W ], i.e. W is the maximal
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gap for the particular geometry considered. Since the rates are proportional to the

conductance, we have λ ∼ G2, leading to:

p(λ) = p(x)|dx
dλ
| = ξ

2W

1

λ
. (9.6)

Hence, the relaxation process is involved in simultaneous individual tunnel-

ing of many electrons with different rates, with the above probability. The 1/λ

distribution was shown to result in the logarithmic relaxation of glass [6] -

∆G(t) ∝
∑
λ

e−λt =

∫
e−λtP (λ)dλ =

ξ

2W
· log(t). (9.7)

As noted in Eq. 9.1, τ depends exponentially on the inverse of the logarithmic

pre-factor [49]. Thus, in the tunneling regime, we obtain the characteristic time

as -

τ ∝ exp

(
2W

ξ

)
. (9.8)

Classical regime

In the thermally activated regime, the calculation is slightly more evolved. In this

case, we have (neglecting the polynomial corrections):

λ ∼ e−Ec/T−x/ξ. (9.9)

Since both Ec and x are random variables, we have to take their joint dis-

tribution into account when evaluating p(λ). We shall assume that these two

variables are uncorrelated, which is plausible since the local gap between grains

should not depend on the particular size or morphology of that grain. As before,
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the distribution of x is assumed to be uniform in the interval [0,W ], while that

of Ec is assumed to be uniform in the interval [0, Umax]. We shall later argue that

Umax ∼ Tfab, since the fabrication temperature ”selects” which charging energies

can be relevant; namely, only those with Ec < Tfab could trap charges in them at

the temperature Tfab [49].

Consider now the distribution of the variable m ≡ Ec/T + x/ξ. We have:

p(m) =

∫ Umax

0

∫ W

0

p(x,Ec)δ(m− Ec/T − x/ξ)dxdEc. (9.10)

Hence:

p(m) =
1

WUmac

∫ Umax

0

∫ W

0

δ(m− Ec/T − x/ξ)dxdEc. (9.11)

Performing the integration over x we find that:

p(m) =
1

WUmax

∫ Umax

0

ξθ(m− Ec/T )θ(Ec/T −m+W/ξ)dEc. (9.12)

Considering possible values of m in the interval m < max(W/ξ, Umax/T ), we

find:

p(m) =
ξ

WUmax

∫ mT

0

dEc =
Tξ

2WUmax

m. (9.13)

Now it is straightforward to find the distribution of relaxation rates using

λ = e−m:

p(λ) = p(m)|dm
dλ
| = Tξ

2WUmax

| log(λ)|/λ. (9.14)

Thus, up to logarithmic corrections the distribution is proportional to 1
λ
, which
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Figure 9.8: Panel a: A fit of the results of Fig. 9.5 with Eq. 9.8 and Eq. 9.15,
for the values of W extracted from the SEM micrographs (see caption of Fig. 9.5).
In these samples, 300K is approximately the fabrication temperature. Panel b: A
similar fit of Fig. 9.6. The quench-condensation technique does not allow reliable
SEM scans, however, normalizing log(τ) by an estimated barrier width W̃ shows a
reasonable fit for both regimes.

again would lead to logarithmic relaxation (as long as Umax or W are large enough

compared to the temperature, such that the distribution of effective barriers m is

smooth enough on the scale of the temperature). Hence, τ depends also on the

width W in the classical regime -

τ ∝ exp

(
2WTfab

Tξ

)
. (9.15)

The theoretical result of both regimes (Eq. 9.8 and Eq. 9.15) and the crossover

temperature (Eq. 9.5) are presented in Fig. 9.8, illustrating that they are reason-

ably fitting with the experiments.

Though this model considers only a simple single-electron process, it may de-

scribe the basic building block for the dynamics in real electron glass that is gov-

erned by simultaneous many electron tunneling processes. Indeed, the model is

able to capture many of the experimental results.

The above interpretation of the results is based on the assumption that τ
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is a good representative of glassy dynamics. This assumption is correct only if

the memory dips can be fully described by their amplitude, and therefore, the

comparison of the new memory dip with the one built at T = Tmax is true. As

noted above, a recent finding in granular AlO systems [93] indicates that this is

not always the case. Moreover, the claim that Tmax sets the energy scale of both

the classical and the quantum regime is based on the above protocol, where the

’old’ dip was created at Tmax. Therefore, in principle, this Told temperature can be

a more substantial value. Consequently, applying the TDE protocol relative to a

memory dip formed at Told < Tmax might lead to different results. In our system,

however, the drastic slow down of the dynamics below Tmax and the relatively wide

memory dips in G (Vg) scans, make this experiment inaccessible.

9.4 Conclusions

In this study, we presented an experimental study of temperature dependent-

dynamics of discontinuous metal films. The relaxation time increases rapidly with

temperature, until, at a low enough temperature, it saturates. These results were

interpreted as a crossover from thermal activation above energy barriers in the

framework of the configuration space, to tunneling through them. Glassy effects

are seen at temperatures as high as 300K and the crossover temperature can

be as large as ∼150K. Hence, the quantum regime extends to unusually high

temperatures.
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Summary

This Ph.D dissertation discusses the nature of electronic transport in amorphous

metals, which, despite its broad relevance in condensed matter physics and the fact

that it was the main subject of countless papers and works, still includes many

open questions.

In the first part of this work, I dealt with this issue with an exact calcula-

tion of the quantum electronic conductance in 1D inhomogeneous wires, using the

NEGF method. I showed that in a wide range of disorder levels, temperatures

and system sizes, a significant part of the electronic states does not contribute

to conductance, due to the lack of overlap with surrounding electronic modes in

the leads. I thereafter discussed the effect of Fermi distribution smearing in these

systems, within a range where T is comparable with the mean level spacing in the

system. In this range, increasing T results in more conductive quantum levels,

as electronic populations in the leads are widened around Fermi energy. This ef-

fect, along with the highly skewed log-normal distribution of conductance values

in disordered systems, leads to a significant increase of the overall current.

The second part of the work discussed another non-trivial and not fully under-

stood phenomenon - electron glass, where strong disorder coupled with Coulomb

interactions results in glass-like dynamics. I presented experimental findings on

thin Au, Ag and Ni films, which show three novel characteristics of electron glasses:

(A) There is a clear temperature dependence of the rate of the logarithmic glass
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relaxation. (B) The relaxation rate is inversely related to the maximal temper-

ature the amorphous metal was exposed to. (C) In some cases, EG films ex-

hibit a crossover from thermally activated glass at relatively high temperatures, to

quantum-mechanics dominated dynamics at low T . These results were discussed

in the framework of the configuration space, and proved to be effectively varied at

the different temperatures.

Despite being common in everyday nature, and in particular, in physics research

and engineering applications, after more than a 100 years of research, the nature

of electrons in amorphous materials shows many non-trivial phenomena and is yet

to be completely comprehended.

The puzzle of quantum interference within the metal, the effect of strong

Coulomb interactions together with disorder, and the role of temperature and

phonons, are all awaiting an improved and more unified theory. More specifically,

many systems that are believed to be metallic with a perfect internal order, such as

graphene nanotubes, metallic quantum dots, and even semiconductor devices and

solar cells - in actual fact, all possess some level of disorder. This, in turn, might

bring about quantum effects of localization and interference, in addition to the

effect of temperature, connection to leads and Coulomb interactions. Therefore,

in many metallic systems, researchers report an inexplicably slow time dependence

and mysterious deviations from the VRH relation at low temperatures. These ef-

fects may be related to the electron glass phenomenon, the hidden modes and the

phonon-less temperature dependence, which are all discussed and characterized in

this work.

As is commonly stated, the behavior of macroscopical condensed systems is

more complicated and unexpected than the sum of many microscopical separated
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processes. The lack of a simple, coherent theory for electronic behavior in disor-

dered solid state physics makes it an exciting research field, with many discoveries

waiting to be revealed.

However, employing a traditional study procedure, that is, hypothesis, pre-

diction and experiment, is much harder in this field, due to the absence of a

trustworthy theoretical framework. Hence, many of the state-of-the-art findings

in this field were discovered accidentally. We tried to take an intermediate course,

and looked for new effects in places where previous studies showed interesting but

unexplained manifestations.

Today, electron glass is still under great debate: How do electrons generate

such long relaxation processes? What is the exact role of Coulomb interactions?

Does the electron glass possess a true glass-transition temperature? How does

the rearrangement of electrons affect conductivity? Despite the comprehensive

experimental data on conductance fluctuations in disordered systems, these major

questions remain unanswered, and theories can not always address all the experi-

mental results.

In this work, I discussed only some of these intriguing effects; many more

aspects need to be explored in-depth, and future experiments must be carried out

in an attempt to formulate a complete theory on the temperature dependence

of disordered quantum systems. Nevertheless, despite its incompleteness, and

perhaps for this very reason, I believe that this study can pave the way for an

additional fascinating findings in this field.
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 תקציר

 

 )קרל יונג(" .רבכל אי סדר יש סדר נסת ,בכל כאוס יש קוסמוס"

 

 מבוא .א

ובתלות  ,עוסקת בתכונות המוליכות של מתכות לא מסודרות הז עבודת המחקר המוצגת בחיבור

מערכות אחרות בפיסיקה בדומה ל ., נומרי ואנליטיניסיוניבטמפרטורה, בהתבסס על מחקר  ןשלה

מובנת במלואה. בשל  הנאינעדיין אלקטרונים בסריג לא מסודר התנהגות השל המצב המוצק, 

הביא בחשבון אורטי או סטטיסטי לא מצליח לפעמים רבות ניתוח תי המורכבות של מערכות אלה

 נבא תוצאות עתידיות.תהליכים הפיסיקליים והראיות הנסיוניות, ולכן גם לא מצליח לאת כל ה

ת ובמערכהדינמיקה לא מסודרות שונה באופן מהותי מהדינמיקה של אלקטרונים במתכות 

, בעבודה 20-המאה ה כבר בשנות החמישים שלת, דוגמת מתכות או מוליכים למחצה. ומסודר

סריג המתכתי אינו הכאשר כי  (P.W. Anderson) שזיכתה אותו בפרס נובל, הראה פיליפ אנדרסון

מתבצעת על ידי  החשמלית מסודר האלקטרונים הופכים להיות ממוקמים במרחב, והמוליכות

דילוג בין מצבים ממוקמים אלו. בחינה של הדינמיקה על ידי מדידת המוליכות כתוצאה מתנאים 

 ;רמת אי הסדר והאטומים במערכת, כמול הטבע של האלקטרונים שונים יכולה לספק מידע רב ע

 הטמפרטורה ועוד. ; השפעתאינטרקציות בין האלקטרוניםת וחשיב

על ידי הן מות אי סדר, מדים ורל מערכות בעלות מגוון מעשבוצע מחקר  ציה זו אני מציגטרבדיס

מוצג מבוא קצר ( Part I)בחלק הראשון של העבודה  .במעבדה הן על ידי ניסויו שיטות חישוביות

למוליכות של אלקטרונים במערכות לא מסודרות, החל בהצגה של מבודדי אנדרסון ותופעת 

"דילוג לטווחים  (,N.F. Mott) נוויל מוט תיאוריית המוליכות של הלוקליזציה, דרך הפיתוח של

 עה של אינטרקציות בין אלקטרונים על המוליכות., ועד להשפ( והקשר לפונוניםVRHמשתנים" )

 א



, שבוצע תחת הדרכתו של פרופ' של המחקר אני מציג את החלק החישובי( Part II)בחלק השני 

מדיות לא של מערכות חד מואת המוליכות את פונקציית ההעברה  חישבנוריצ'רד ברקוביץ, ובו 

(. שימוש בפונקציית גרין מאפשר NEGFעל ידי "פונקציית גרין מחוץ לשווי משקל" )מסודרות 

את  גם בקירוב קחת בחשבוןהאלקטרונים, ולהמוליכים על  המגעיםשל  השפעהלכלול את ה

ה מציג את חלק זהפרק הראשון ב ונים.השפעתם של פונונים ושל אינטרקציות בין האלקטר

המתמטי של התיאור  ואת ההנחות עליהן היא מתבססת, כמו גם את עקרונות שיטת החישוב

פורשים  השני החלק שלים האחרונים ני הפרקש ."המילטוניאן אנדרסון"לית על ידי ה הפיסיקהבעי

במערכת תופעות מפתיעות של המוליכות  החושפות של המחקר החישובי את התוצאות עיקריות

 מדית בנוכחות אי סדר.חד מ

(, Electron Glassניסיוני בנושא "זכוכית אלקטרונים" )ק השלישי של הדיסרטציה דן במחקר החל

מערכות זכוכיתיות אחרות בדומה למעבדתו של פרופ' אביעד פרידמן. בו ואותו ביצעתי בהדרכת

ה דעיכה ארוכה לשווי משקל אנרגטי ותופעת זיכרון. בתחילת בטבע, גם זכוכית אלקטרונים מרא

חלק זה אני מציג את התוצאות הקודמות בתחום, את המערכת הניסיונית שבה השתמשתי ואת 

ני סוקר שתי תופעות חדשות אותן גילינו במעבדה במדידות מוליכות אשיטות המדידה. בהמשך 

המדידה בטמפרטורה  הזכוכיתית מיקההדינמתכת, המראות תלות חזקה של  של שכבות דקות של

 ובטמפרטורה שבה הדגם נוצר.

 

 

 

 

 הקדמה תיאורטית .ב

בניגוד לפונקציית בלוך בסריג המסודר, במתכות לא מסודרות כפי שהראה אנדרסון, ו

 אקספוננציאליתהאלקטרונים ממוקמים במרחב, ופונקציית הגל שלהם דועכת 
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מערכות  .(1.1)איור   הוא מרחק הלוקליזציה -בסריג ו i-ם פונקציית הגל המיקו ואה irכאשר 

 (.Anderson Insulators) נקראות "מבודדי אנדרסון"אלה 

המוליכות אינה יכולה  ליזציה קטן מגודלו של הדגם כולו,בהן מרחק הלוקבמקרה של מערכות ש

הנגרם בשל הפרישה במרחב של פונקציית  להתבצע על ידי מעבר פשוט של אלקטרונים במתכת,

 – (Quantum Hopping) על ידי תופעת הדילוג הקוונטי . במערכת כזו המוליכות מתרחשתהגל

בשל חפיפה קטנה של פונקציית הגל של  ,jנעלם ומופיע מיד במצב  iאלקטרון הנמצא במצב 

 ב



אשר  דרושים פונונים גבר על הפרשי האנרגיה בין המצביםכדי להת .(1.2)איור  j-ו iשני המצבים 

 העודפת.\מקבלים את האנרגיה החסרה\תורמים

יות הגל הממוקמות, וכתוצאה מהתפלגות האכלוס של הפונונים צשל פונק זו התנהגותבשל 

האתרים עם המרחק בין  בצורה מעריכיתהסיכוי לתהליך דילוג כזה הוא דועך באנרגיה, 

. הנחה של צפיפות מצבים אחידה במרחב םביניהועם הפרשי האנרגיות העצמיות  הממוקמים

עיקר התרומה למוליכות נובע מהדילוגים  המעריכיתובאנרגיה, והנחה כי בשל הדעיכה 

מובילה לתלות של מרחקי הדילוג האופייניים עבור טמפרטורות שונות, ולכן  ,המסתברים ביותר

 :בטמפרטורהשל המוליכות גם בתלות 
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הוא קבוע  0T-היא הטמפרטורה, ו T מדיות של המערכת,הוא המ d הוא המוליכות, G כאשר

ניתוח זה נקרא "דילוג למרחקים משתנים"  במערכת.התלוי במרחק הלוקליזציה וצפיפות המצבים 

(Variable Range Hopping, VRH.והוא המודל המקובל למוליכות במערכות לא מסודרות ,) 

 מד גדול מאחדהיא שבמערכות בעלות ממודל אחת התוצאות של ה 1d   עיקר הזרם

האלקטרוני יזרום דרך רשת פרקולציה דלילה של אתרים ממוקמים. ניתן לתאר זאת על ידי רשת 

של נגדים בין האתרים, אשר התנגדותם קשורה ישירות לאחד חלקי סיכוי הדילוג בין האתרים 

הסמוכים. בשל ההתפלגות האקספוננציאלית של הנגדים, הזרם "יבחר" את הדרך בה ההתנגדות 

 .)1.3)איור  יעבור דרך שאר האתרים וללת היא הנמוכה ביותר, וכמעט לאהכ

א המרחק האופייני בין ערוצי ושהמרחק הפרקולציה, תופעה זו יוצרת עוד סקלת אורך למערכת, 

סדר גודל של התנגדות המערכת. שהתנגדותם היא ב "נגדים"רשת הפרקולציה, או לחילופין בין 

ברמת אי הסדר במערכת, ובדרך כלל הוא גדול בכמה סדרי גודל מרחק הפרקולציה תלוי בעיקר 

מאורך הלוקליזציה, ויכול להגיע עד לגדלים של עשרות ומאות מיקרונים. בשל התנהגות זו, שהיא 

קרוסקופי ל מספר מבעלת תכונות של תופעות קוונטיות מיקרוסקופיות אבל בעלות סקלת אורך ש

=ביניים(. תופעה זו יוצרת 'meso') 'ערכות 'מזוסקופיותשל חלקיקים, מתוארות מערכות אלה כמ

שינויים חדים במוליכות הכללית של המערכת כתוצאה משינוי תנאי הסביבה, או בין דגמים זהים 

לכאורה. שינויים אלה, היכולים להיגרם כתוצאה משינוי המתח החשמלי, הטמפרטורה או שדה 

רעש תרמי אבל הוא נובע ישירות מהתכונות יוצרים אפקט הדומה ל ,חשמלי ניצב )מתח שער(

 .(Mesoscopic Fluctuations' )פלקטואציות מזוסקופיות'הקוונטית של המתכת, ונקרא 

 

תופעה חשובה נוספת במבודדי אנדרסון היא פער האנרגיה הקולומבי, שהוא תוצאה ישירה של 

אינטרקציית הדחייה בין אלקטרונים סמוכים. דחייה זו יוצרת עדיפות להמצאות מצבים מלאים 

 ג



ת פרמי אנרגיילליד מצבים ריקים, דבר הסותר את הנטייה של האלקטרונים להסתדר כולם מתחת 

לאנרגיות גבוהות או  בים הקרובים לאנרגיית פרמי נדחיםהמצ ,וכה. בשל כךבטמפרטורה נמ

סביב אנרגיית  התמעטות של מספר המצבים שמשמעותוונוצר פער אנרגיה "רך"  נמוכות יותר,

נגרם על והעובדה כי עיקר הזרם במערכת  ,. תופעה זו(אך לא התאפסות מוחלטת שלהםפרמי )

יותר בטמפרטורות נמוכות, ולתלות  קטנהמובילה למוליכות  ,מיסביב אנרגיית פר ידי אלקטרונים

 הבאה של המוליכות בטמפרטורה:
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 חישוביהמחקר התקציר  .ג

 המודל ושיטת החישוב.   1 ג.

ראשית לתאר את  אנו נדרשיםעל מנת לחשב את המוליכות במערכות קוונטיות לא מסודרות 

 tight) המערכת בצורה תיאורטית. אחד הכלים המקובלים לשם כך הוא קירוב האלקטרון הקשור

binding) מרוכזת כולה סביב מרכז האטום. תחת הנחה  ןאלקטרוה, המניח כי פונקציית הגל של

 אטום מתארת קיקי בצורת מטריצה כאשר כל עמודהחל-זו ניתן לכתוב את ההמילטוניאן החד

. האיברים על האלכסון בהמילטוניאן הם ערכי אנרגיית הקשר של האלקטרון המתכתי בסריג

האלקטרונים  מציינים את התרומה לאנרגיה של דילוגוהאיברים שאינם על האלכסון  ,iלאטום, 

 .ijtבין האטומים, 

, ובהנחה כי האלקטרונים קשורים היטב ולכן יכולים לדלג רק לאטומים מדיבמקרה החד מ

 :ההמילטונאן הוא מהצורה הבאה השכנים הקרובים ביותר,
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או ערכי הדילוג )או שניהם(  של המטריצה האלכסון אנרגיית הקשר עלבמערכת לא מסודרת, 

אינם אחידים, ולקוחים מתוך פונקציית צפיפות הסתברות, הקובעת את רמת אי הסדר. ניתן 

 ד



אנרגיות הדילוג זהות בעיקרן, ולכן בשל שיקולי נוחות בחרנו את הן להראות כי שתי האפשרויות 

ijt  את . את סקלת האנרגיה של ההמילטוניאן . קביעה זו קובעת גם1 תשוואחידות ולהיותi

מתוך התפלגות אחידה בטווח בצורה אקראית לקחנו  W 2,W 2כאשר , W  קובע את רמת

 הבא: אי הסדר וקשור למרחק הלוקליזציה על ידי היחס
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שיטה היא ( Non Equilibrium Green's Function)  פונקציית גרין למערכות מחוץ לשווי משקל

המרחיבה את הטכניקה של פונקציות גרין על מנת לפתור משוואות דיפרנציאליות, דוגמת 

טיות. פונקציית גרין, שהיא תגובת השדה המתואר ישרדינגר, כאשר המשוואות אינן הרמ משוואת

על ידי המשוואה לעירור נקודתי, מתארת במערכת קוונטית את אמפליטודת סיכוי ההתקדמות 

של החלקיק בזמן ובמקום. משום כך, חישוב סיכוי ההעברה דרך המערכת הקוונטית קשור ישירות 

או הכללת  דוגמת חיבור המערכת למגעים ,יבוע. הכללת גורמים חיצונייםלפונקציית גרין בר

 יתונאינטרקציות, נעשית על ידי הוספת גורם מדומה לאנרגיה של המשוואה, האנרגיה העצמ

(Self-Energy). מערכות  מודל האלקטרון הקשור, ניתן לתאר במדויקהנחות שבבדרך זו, מלבד ה

אותן אנחנו בחנו  וונים. בשל אילוצי זמן חישוב, המערכותמדים מגקוונטיות עם תנאי שפה ומ

 מדיות, אך עם רמות אי סדר ותנאי שפה שונים. הן מערכות חד מ

 

 מצבי תהודה נסתרים במערכת קוונטית לא מסודרת.   2 ג.

בדומה למהוד אופטי, למערכת קוונטית ישנן מצבי תהודה בפונקציית ההעברה האלקטרונית, 

סגורה, המנותקת קוונטית באופן ישיר למצבים העצמיים של ההמילטוניאן. במערכת שקשורים 

ממשיים ומצבי התהודה נמצאים בדיוק באותם הם  באנרגיה מהעולם החיצוני, המצבים העצמיים

הערכים העצמיים של ההמילטוניאן  ,ערכי האנרגיה. אולם, כאשר מחברים את המערכת למגעים

-לאנרגיה של המצבים הקווזי שלהם קשור בים, כאשר החלק הממשיהופכים להיות גדלים מרוכ

, והחלק )למערכת לא הרמיטית לא ניתן להגדיר במדויק ערכים עצמיים( עצמיים של המערכת

המדומה קשור לזמן החיים של האלקטרון במצב זה. באופן דומה, גם פונקציית ההעברה משתנה 

פונקציית נעלמים לגמרי ו פתוחה לחלוטין הםמערכת בי התהודה מתרחבים, עד שבמצב של ומצ

 לכל ערך באנרגיה. 1ההעברה של האלקטרונים שווה 

מצבי התהודה מופיעים גם במערכת פתוחה לחלוטין, מכיוון  במערכת בעלת אי סדרעל כל פנים, 

 ממוקמים מנותקים באופן חלקי מהמגעים. השבאופן אפקטיבי המצבים 

 ה



מערכות לא מסודרות, עם רמות אי סדר שונות וחוזקי  רחב של ווןמגי נומר בנו באופןחישבמחקר 

חלק גדול ממצבי –תוצאה מפתיעה  והרא . חישובים אלוצימוד שונים בין המערכת למגעים

התהודה בפונקציית ההעברה נעלמים לגמרי כאשר החיבור למגעים חזק מספיק. ניתוח של מספר 

 נותריםמראה כי עבור טווח גדול של רמות אי סדר  במערכות חד מימדיותהמצבים הנסתרים 

2בדיוק  / 5 N  מתוךN (5.5ו 5.2 )ראה איורים המצבים העצמיים במערכת. 

בחינת פונקציות הגל של המצבים הנעלמים מראה כי הגורם להיעלמות זו היא התאחדות של 

. פונקציית הגל של האלקטרון מתרכזת כולה סביב מגעיםבתוך המערכת עם הקוונטיים מצבים 

(. בהתאם 5.4)איור  להולכה החשמלית תקצה הדגם ובתוך המגעים עצמם, ולכן כלל לא תורמ

לכך, כאשר רמות אי הסדר גבוהות מספיק ומצבים אלקטרוניים רבים ממוקמים בצורה כזו שאין 

Nועם המגעים )כאשר  להם כלל אינטרקציה עם קצות הדגם ( מספר מצבי התהודה גדל ,

 .(5.5-5.6ברמות אי סדר גבוהות מאוד )איורים  N-והולך, ומגיע קרוב ל

 Physical Reviewלאחרונה בכתב העת  תופעה זו והתוצאות החישוביות המופיעות בפרק פורסמו

B [26], ראה הפנייה. 

 

 בטמפרטורה של המוליכות בהעדר פונוניםהתלות .   3ג.

תוצאה נוספת המוצגת בעבודה היא תלות מפתיעה של המוליכות בטמפרטורה, גם בהעדר 

 מבוססת ,VRH, התוצאה זו מפתיעה משום שהתיאוריה המקובלת לתלות בטמפרטורפונונים. 

, המוצגות בעבודה לפי התוצאות החישוביות .על דילוג בין אתרים ממוקמים על ידי פונונים

 גם במקרה בו , בטמפרטורה המוליכות גדלה עם הטמפרטורה לאורך טווח של כמה סדרי גודל

 .(6.7)איור הפונונים לא נלקחו בחשבון בחישוב הקוונטי 

מראה  , שהוא תוצאה של הפריסה החלקית של פונקציות הגל,)ללא פיזור( אלסטיחישוב הזרם ה

מדית ערכי מ-מאורך המערכת החדיה אינו קטן בהרבה ק הלוקליזצרחכי במערכת שבה מ

המוליכות אינם קטנים מאוד. ניתוח של פונקציית ההעברה במצב כזה, מגלה כי התפלגות הסיכוי 

נורמלית נובעת ישירות -(. התפלגות לוג6.3נורמלית )איור -למעבר אלקטרונים הוא פונקציה לוג

ופיינת באזור רחב של ערכים הקרובים לאפס, , והיא מאאקראייםמתוך מכפלה של הרבה ערכים 

מערכת בשל תופעת התהודה של ההעברה בוזנב צר של ערכים גבוהים אקספוננציאלית. אכן, 

הקוונטית, עבור רוב ערכי האנרגיה סיכוי המעבר הוא קטן מאוד, ורק קרוב מאוד למצב התהודה 

 (.6.2)איור  1-מתקבל סיכוי שהוא קרוב יותר ל

ורה, חישוב המוליכות מתבצע על ידי אינטגרציה על פונקציית ההעברה על פני כל בהעדר טמפרט

ערכי האנרגיה שבהם קיים אלקטרון במוליך בצד אחד, ואין אלקטרון במוליך שבצד השני. הפרש 

 האכלוסהתפלגות  סופית הזה הוא בדיוק המתח המופעל על המערכת. אולם, כאשר הטמפרטור

, והוא מתואר על ידי פונקציית פרמי מוגבל לאנרגיות מסוימותשל האלקטרונים במגעים אינו 

 ו



דיראק. ככל שהטמפרטורה גדלה, פונקציית פרמי דיראק מתרחבת ולכן האינטגרציה פרושה על 

 (.6.1פני טווח אנרגיות גדול יותר )איור 

של המוליכות כאשר משמעותי חישוב זהיר מגלה כי צירוף של שתי עובדות אלה יוצר גידול 

יכלל בגבולות ימצב תהודה בעל העברה גבוהה וההסתברות ש ןמכיווהטמפרטורה גדלה, 

האינטגרציה גדל גם הוא. במערכת ללא מצבי תהודה, או בעל התפלגות ערכי העברה שאינה 

, פתרון האינטגרל היה זהה עבור כל טמפרטורה. במקרה הלא מסודר, בשל העובדה כי המוט

 (, מתקבלת תלות חזקה בטמפטורהskewnessנורמלית היא בעלת הטיה גבוהה )-פונקציה הלוגה

עליה ת מתיאוריית הדילוג והניסיוני ותכולה להסביר את הסטי. תוצאה חישובית זו י)6.8)איור 

 בטמפרטורות נמוכות.

 

 

 

 

 

 יהניסיונמחקר התקציר 

 זכוכית אלקטרוניםמבוא ל.   1 ד.

זכוכיתיות אחרות, זכוכית אלקטרונים מתאפיינת בהעדר שווי משקל, בדעיכה בדומה למערכות 

ארוכה של האנרגיה הפנימית במערכת, ובתופעות זיכרון. תופעות זכוכיתיות מתרחשות במערכות 

בעלות אי סדר גבוה ואינטרקציות חזקות, דוגמת האינטרקציה בין אטומי הסיליקון והחמצן 

 ום יום.בזכוכית המוכרת לנו מחיי הי

מערכת לא מסודרת של ספינים במתכתות מסוימות  כאשר ישנו אי סדר פנימי בחומר, דוגמת

שאינו מאפשר לאטומים להסתדר, לא מופיע ארגון זכוכית , או בקירור מהיר של ספין(-)זכוכית

במצב  "נתקעת"מערכת לעבור מעבר פאזה מנוזל למוצק ה , ובמקוםכמו בחומר המוצק פנימי

של הזכוכית . בטמפרטורה סופית תהליך ההסתדרות )7.1)איור  ביניים, בשווי משקל מדומה

 מימחסו מעלעל ידי מעבר בין מצבי שווי משקל מדומה  אך בקצב איטי מאוד תרחש בכל זאתמ

 נקבע על פי חוק אהרניוס בטמפרטורההקצב . התלות של אנרגיה

0 exp
B

U

k T
 

 
  

 
 

הוא קבוע שנקבע על ידי   0-הוא קבוע בולצמן ו Bkהוא גובה מחסום האנרגיה,  U כאשר

 תכונות המערכת.

 ז



. בהצגה כדי להציג טוב יותר מערכות מסוג זה, ניתן לתאר אותן על ידי מרחב הקונפיגרציות שלהן

. פריסת האנרגיה רב ממדי כל סידור של האטומים/ספינים/אלקטרונים מציין נקודה במרחב זו

פוטנציאל האנרגיה של המערכת  את המתארת פונקציהיגורציות השונות במרחב יוצרת קונפהשל 

(. לאחר קירור מהיר של הזכוכית המערכת נמצאת באחד מערכי המינימום המקומיים 7.3)איור 

ל אלה, ובתהליך הדעיכה היא עוברת דרך נקודת מקסימום אל ערך נמוך יותר של מצבי פוטנציא

 (.7.4באנרגיה )איור 

זה, והיא נוצרת במתכות בעלות אי סדר היא תופעה חדשה יחסית בתחום זכוכית אלקטרונים 

פנימי גבוה וצפיפות נושאי מטען גבוהה, שגורם לאינטרקציות חזקות בין האלקטרונים. במצב 

יכות הנמדדת מראה קשר ישיר לאנרגיה הפנימית של האלקטרונים, ואחרי קירור מהיר המולכזה 

שער( ישנה דעיכה איטית של  ישיר או מתח או שינוי של השדה החשמלי על הדגם )על ידי מתח

 המוליכות.

מתפלגת בצורה י האנרגיה במערכת היא רחבה מאוד וניתן להראות כי כאשר התפלגות מחסומ

הכללית של המוליכות, שהיא תוצאה של חיבור אינספור תהליכים מקרוסקופיים,  אחידה, הדעיכה

השנים האחרונות מערכות מתכתיות רבות  20-תהיה לוגריתמית בזמן. ואכן, במדידות שנעשו ב

 :(7.7)איור  מראות דעיכה עם תלות לוגריתמית על פני הרבה סדרי גודל בזמן

 0 logG G S t  

 הוא קצב הדעיכה. S-הוא הזמן ו t היא המוליכות במצב המעורר, 0G כאשר

בנוסף, ובשונה מתהליכים כימיים ופיסיקליים אחרים, תהליך העירור של האלקטרונים הוא 

ן איטי. בשל כך, נוצרת תופעה הידועה בעיקרו זהה לתהליך הדעיכה, ומתרחש גם הוא באופ

כ"זכרון" של המערכת את מצב שווי המשקל המדומה, ולכן של ההיסטוריה החשמלית והתרמית 

של הדגמים. בזכוכית אלקטרונים ניתן לצפות בתופעה זו ביתר בירור, בשל העובדה שלא נדרש 

ל ידי שדה חשמלי ניצב, לשנות את הטמפרטורה על מנת לעורר את המערכת, וניתן לעשות זאת ע

. כאשר המערכת נמצאת (MOSFET) מוליכים למחצהבבקונפיגורציה דומה לזו של שערים לוגיים 

זמן רב במתח שער מסוים המוליכות בו דועכת. שינוי של מתח השער משנה את מספר 

האלקטרונים במערכת ולכן מוציא אותה משווי משקל באופן מיידי, ונצפית עלייה מהירה 

במוליכות, שאחריה דעיכה מחודשת לקראת שווי משקל חדש. במצב כזה, ובשל תהליך הזכרון, 

(. צורה 7.9הירה של מתח השער יוצרת צורת שקע סביב הערך הקודם של המתח )איור סריקה מ

  .(Memory Dip) 'שקע זכרון'זו נקראת 

קצב הדעיכה בזכוכית אלקטרונים לא הראה ירידה עם ירידת  עד לאחרונה  באופן מפתיע,

הטמפרטורה, כפי שמתחייב מחוק אהרניוס ובניגוד לכל המערכות הזכוכיתיות האחרות )איור 

אינם תהליכיים במתכת (. בשל כך נטען כי התהליכים השולטים בהסתדרות האלקטרונים 10.1

 ח



וונטיים, בהם האלקטרונים עוברים ממצב תרמיים שנגרמים על ידי פונונים, אלא תהליכים ק

 למצב על ידי תופעת המינהור.

 

 

 מיקה תלוית טמפרטורה וזכרון הטמפרטורה המקסימלית.   דינ2 ד.

נידוף  – אנו חקרנו את המוליכות בשכבות דקות של זהב, ניקל וכסף, שנודפו בשיטת "עיבוי קר"

(. באמצעות שיטה 8.1-8.3על מצע של סיליקון אוקסיד שקורר לטמפרטורות נמוכות )איורים  תרמי

זו יכולנו לשלוט בטמפרטורה המקסימלית אליה נחשפו הדגמים, ולחמם אותם לאחר מכן 

 לטמפרטורה גבוהה יותר.

מיקת הדעיכה לשווי משקל מערכות של זכוכית אלקטרונים, דינבניגוד לתוצאות הקודמות ב

הראתה האטה דרמטית בטמפרטורות נמוכות מזו שבה המערכת נוצרה. יתר על כן, חימום 

הנידוף, אך קירור חזרה  תלטמפרטורה מקסימלית חדשה הראה קצב דומה לזה שהיה בטמפרטור

לטמפרטורת הנידוף יצר האטה משמעותית. על כן, שתי מדידות זהות שנעשו בטמפרטורת הנידוף, 

 .)9.1ת אחריו, הראו קצבי דעיכה שונים מאוד זה מזה )איור אחת לפני החימום ואח

באופן יותר מפורט, סדרה של מדידות בטמפרטורות שונות עד לטמפרטורת החדר הראו תלות 

ליניארית של קצב הדעיכה עם הטמפרטורה, ותלות לינארית הפוכה לטמפרטורה המקסימלית בה 

 :(9.4הדגם היה )איור 

max

T
S

T
 

האטה כתוצאה מקירור, ושינוי של סקלת הטמפרטורה עם  –שתי תוצאות מפתיעות אלה 

הובילו אותנו למסקנה כי )א( בטווח מסוים של טמפרטורות זכוכית  ,הטמפרטורה המקסימלית

)ב( כאשר היא מיוצרת בטמפרטורה ידי אקטיבציה תרמית של פונונים. אלקטרונים כן נשלטת על 

מטמפרטורת הזכוכית שלהן, סקלת האנרגיה בזכוכיות אלקטרונים נקבעת על ידי שנמוכה 

 הטמפרטורה המקסימלית שבה היא הייתה.

כאשר  את התצפיות הללו בצורה הבאה: ההצגה של מרחב הקונפיגורציות ניתן להסביר על ידי

סקור לא היה באפשרות האלקטרונים ל בטמפרטורה גבוהה מספיקהזכוכית מעולם לא הייתה 

שעומקם  השווי משקל מדוממצבים של ולכן הם נתקעים ב ,את כל מרחב הקונפיגורציות

וקצב  maxTבשל כך התפלגות הקצבים של התהליכים נקבע גם הוא על ידי  .maxTפורפורציונלי ל

ותר, האלקטרונים מוצאים את לטמפרטורה גבוהה י הדעיכה משתנה. כאשר הזכוכית נחשפת

 (.9.5את קצב הדעיכה )איור דרכם לבורות פוטנציאל עמוקים יותר, מה שמאט 

 .[50], ראה הפנייה Physical Review Lettersתוצאות פרק זה פורסמו לאחרונה בכתב העת 

 ט



 

 

 מיקה קוונטית בטמפרטורות נמוכותיקה קלאסית לדינ.   מעבר מדינמ3 ד.

תופעה  מעלות קלווין(, גילה 4.2הדגמים עד קרוב לטמפרטורה של הליום נוזלי )קירור נוסף של 

maxמיקה נעצרת מתחת לטמפרטורה ששווה בערך למפתיעה נוספת: ההאטה בדינ 2T , והופכת

להיות קבועה. לדוגמא, במקרים בהם הדגם יוצר בטמפרטורת החדר טמפרטורת המעבר הייתה 

 (10.4-10.6 יםמעלות קלווין )איור 150סביב 

כפי שנטען בעבר, חוסר תלות בטמפרטורה יכול להצביע על אפקט של זכוכית קוונטית, אך 

 קלאסי, ותחום קוונטי, ומעבר בינהם.-תחום תרמי –שני תחומים  םבמערכת שלנו נראה כי ישנ

 SEMכדי להבין את המעבר הזה, ומדוע הוא לא נצפה במחקרים בחומרים אחרים, סרקנו תמונות 

של הדגמים. מהסריקות נראה שהמבנה הגאומטרי של הדגמים אינו רק בעל אי סדר גבוה, אלא 

הוא גם אינו רציף. המתכת המנודפת מעדיפה להסתדר במבנה פרקטלי של גרגירים מתכתיים עם 

ננומטר  50-ננומטר, ושל המרווחים עד כ 100סדר הגודל של הגרגירים הוא עד  רווחים בינהם.

 (.10.5)איור 

פיתחנו תיאוריה המבוססת על הגאומטריה המיוחדת הזו ביחד עם פרופ' אריאל אמיר )הרווארד( 

ועל התפלגות הגדלים של הגרגירים. לאלקטרון העובר בין שני חלקיקים גדולים דרך חלקיק 

ולכן גם בעל אנרגית טעינה גבוהה יותר, יש שתי אפשרויות עקרוניות לעשות  ,יותר שלישי, קטן

  .)10.7, ומעבר ממנו אל החלקיק השני )איור . על ידי קליטת פונון, מעבר לחלקיק הקטן1 –זאת 

. על ידי מינהור קוונטי דרך החלקיק הקטן. ניתוח מפורט של המשוואות מראה כי אכן בתחום 2

רגיות בהן אנו עוסקים ישנו מעבר בין עדיפות לתהליך התרמי בטמפרטורות גבוהות הגדלים והאנ

 תהליך הקוונטי בטמפרטורות נמוכות.אל ה

. םהגרגיריוהמרווחים בין  הגודל הקבוע את נקודת המעבר הוא גודלו של החלקיק האמצעי הקטן

אכן, כאשר המערכת נוצרה בטמפרטורה נמוכה האלקטרונים לא יכולים לעבור דרך החלקיקים 

הקטנים יותר, ובשל ההתנהגות הפרקולטיבית של האלקטרונים אזורים שלמים נחסמים בפניהם. 

מיקה הזכוכיתית, ולכן גם משנה את נקודת המעבר הדגם חושף חלקיקים חדשים לדינחימום של 

  בטמפרטורה.
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